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Inorganic carbon evolved as limiting factor
Rubisco: an enzyme with low affinity and specificity to CO,

1. Problem : low affinity for CO,
Km (CO,) Reference
[uM]
Spinacea 21+1 Spreitzer et al.
oleracea 2005
Anabaena 293 + 27 Badger 1980
variablis

- high content of Rubisco compensates in
higher plants (up to 30% leaf protein)

2. Problem : O, as competitive substrate
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Phosphoglycolate (2-PG) or photorespiratory cycle | n plants

Metabolic pathway transforming
2-phosphoglycolate  produced
by oxygenase reaction of
RubisCO to 3-phosphoglycerate

Functions:

- Recycling of 75% of organic
carbon from 2-PG

- Avoidance of accumulation of
toxic intermediates

- Synthesis of intermediates

- Protection against high light

Problems:
- Loss of organic carbon

- Loss of energy

Photorespiratory plant mutants
need high CO, — high CO ,-

requiring phenotype



Cyanobacteria evolved a carbon concentrating mechan ISm
(CCM) employing C_;-uptake mechanisms _and carboxysomes
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m=) Bicarbonate is concentrated inside the cell



Cyanobacteria evolved a carbon concentrating mechan ISm
(CCM) employing C ;-uptake mechanisms and carboxysomes

Model of the bicarbonate dehydrating complex
inside the carboxysome (Cot, So & Espie, 2008)
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Rubisco (Rbc) is concentrated in
carboxysomes , where carbonic
anhydrase (CcaA) releases high
CO, amounts from HCO,’

m=) CO, is released near RubisCO allowing efficient carboxy lation,
CCM mutants need high CO , — high CO ,-requiring phenotype



Search for 2-PG metabolizing proteinsin  Synechocystis:
A mixture of plant and bacterial enzymes was found!

Sequence comparison of proteins participating in phosphoglycolate turnover with candidate proteins from Synechocystis sp. strain
PCC 6803 using PSI- and PHI-BLAST (Altschul et al., 1997). The similar proteins from bacteria or Arabidopsis thaliana are in most
cases biochemical characterized.

Protein (Abbreviation) Organism Acc. No. Literature Similarity ORF in
e-value Synechocystis
Phosphoglycolate phosphatase (PGP) A. eutrophus P40852 Schéferjohann et al., 1993 3e™® slr0458
9™ sll1349
Glycolate dehydrogenase subunit D (GIcD) E. coli AAC76015  Pellicer et al., 1996 3™ sll0404
Serine:glyoxylate aminotransferase (AGT) A. thaliana At2g13360 Liepman and Olsen, 2001 3e™ slli1559
GDC, P protein (GevP) A. thaliana At2g26080 Bauwe et al., unpubl. 0 slr0293
GDC, T protein (GevT) A. thaliana Atlgl11860  Bauwe et al., unpubl. 7e>* sll0171
GDC, H protein (GevH) A. thaliana At2g35120  Bauwe et al., unpubl. 2e° sIr0879
GDC, L protein (Gevl) A. thaliana At3g16950  Bauwe et al., unpubl. 1e™ sIr1096
Serine hydroxymethyltransferase (SHMT) A. thaliana At4g37930  Voll et al., 2006 6e™" sli1931
Hydroxypyruvate reductase (HPR) A. thaliana At1g68010 Bauwe et al., unpubl. 2e° sll1908
2e”° sIr1556
Glycerate kinase (GLYK) E. coli AAB93855 Cusaet al., 1999 3e™ slr1840
Glyoxylate carboligase (GCL) E. coli AAA23864  Chang et al., 1993 le-” sIr2088
3e-” sli1981
Tartronic semialdehyde reductase (TSR) E. coli P77161 Cusa et al., 1999 3™ sIr0229

Hagemann et al. 2005




Cyanobacterial 2-PG metabolism: A combination of pl ant-like
2-PG cycle and bacterial-like glycerate pathway?
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The glycolate dehydrogenase mutant showed diminishe d
growth at HC, while other mutants grew like WT
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Mutants defective in plant-like 2-PG cycle showedd  iminished
growth at LC, while glycerate cycle mutant grew ik e WT
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Glycolate accumulation was only observed in cells o f the
glycolate dehydrogenase mutant, even at HC!
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Glycine accumulation in mutants of ORFs encoding pl ant-like
2-PG cycle or/and bacterial-like glycerate pathway  proteins
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m=) Glycolate metabolism exists but employs at least two pathways in cyanobacteria
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