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Thanks!Thanks!

� Anna Hansell and Paul Elliott

• Imperial College

� Isabel Fortier

• P3G 
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Structure of talkStructure of talk

� What determines the size and shape of a 

genetic epidemiology study?

� The statistical power of case-control studies

� Expected event rates in large cohort studies

� International biobank harmonization
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What determines “size” What determines “size” 

and “shape”?and “shape”?
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� The scientific question

• Unrelated individuals v families
� Association v linkage

� CDCV v rare alleles with large effects

• Case-control v cohort designs

• Classical public health research

• Special populations

� Pragmatic opportunities and challenges

• Record linkage

• Special approaches to recruitment

� Ethico-legal considerations

What determines “shape”?What determines “shape”?
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� The scientific question

• Statistical power
• Type of end-point
• Main effects v interactions
• Time required to generate enough cases

� Cost and resources

� Pragmatic restrictions

What determines “size”?What determines “size”?
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How large is How large is 

“LARGE”?“LARGE”?
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Two classes of cohort biobanksTwo classes of cohort biobanks
� Very large

• Primary focus on binary end-points
� Nested case-control studies

• Hundreds of thousands of recruits

• e.g. UK Biobank, LifeGene, Kadoorie Study

� Large

• Primary focus on quantitative end-points

• Tens of thousands of recruits

• e.g. ALSPAC, Generation Scotland, CARTaGENE
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The £59,000,000 question!!!The £59,000,000 question!!!

� Just how big does a cohort-based biobank 

have to be?

• Interest in binary disease related events and 
(some) binary exposures

• Middle aged recruits (40-69 years)

• Population-based recruitment
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� Contemporary pre-eminence of genetic 

association studies rather than genetic linkage 

studies 

� Covers both stand-alone case-control studies, 

and nested case-control studies in large 

cohorts. Main issue is the number of cases.

� Sample size determining in both settings

The statistical power ofThe statistical power of

casecase--control studiescontrol studies
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SimulationSimulation--based power calculationsbased power calculations

� Work with the least powerful (common) setting

• Disease outcome and exposures all binary

� Logistic regression; interactions = departure 

from a multiplicative model

� Four controls per case

� Complexity (arbitrary but realistic)
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Formal power calculationsFormal power calculations
� Realistic bio-analytic complexity

• Logistic regression

• Assessment errors, frailty, p<10-4,10-7,10-10

• ≈ 4 controls per case
ESPRESSO: (Estimating Sample-size and Power in R by
Exploring Simulated Study Outcomes).
http://www.p3gobservatory.org/powercalculator.htm

See also: Paul R Burton; Anna L Hansell; Isabel Fortier; 
Teri A Manolio; Muin J Khoury; Julian Little; Paul Elliot t.
International Journal of Epidemiology 2008;
doi: 10.1093/ije/dyn147
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Disease Gene Polymorphism Approximate 

frequency of the 
disease 
associated allele  

Approximate  

odds ratio 
for disease 
associated 
allele 

Ref 

 

Thrombophilia F5 Leiden 
Arg506Gln 

0.03 4 
12
 

Crohn’s 
disease 

CARD15 3 SNPs 0.06(composite) 4.6 
67 

Alzheimer’s 

disease 

APOE ε2/3/4 0.15 3.3 13,68 

Osteoporotic 

fractures 

COL1A1 Sp1 restriction 

site 

0.19 1.3 69,70 

Type 2 
diabetes 

KCNJ11 Glu23Lys 0.36 1.23 71 

Type 1 
diabetes 

CTLA4 Thr17Ala 0.36 1.27 72,73 

Graves’ 
Disease 

CTLA4 Thr17Ala 0.36 1.6 74 

Type 1 
diabetes 

INS 5’ VNTR 0.67 1.2 75 

Bladder 
Cancer 

GSTM1 Null (gene 
deletion) 

0.70 1.28 
76 

Type 2 
diabetes 

PPARG Pro12Ala 0.85 1.23 
11
 

 
 

 
Hattersley AT, McCarthy MI. Lancet 2005;366:1315-13 23
Examples of some polymorphisms or haplotypes that
have shown consistent association with complex dise ase

How smallHow small

is “small”?is “small”?

Most in range:
1.1 – 1.5
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Recent findings***Recent findings***

Type 1 diabetes 1,2

Type 2 diabetes 2,6

Coronary heart disease 2,7-9

Breast cancer 10,11

Colorectal cancer 12-14

Prostate cancer 15,16

Age-related macular degeneration 17-19

Crohns disease 2,20

***See full reference list in reserve slides
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An example:An example:

Diabetes mellitus defined byDiabetes mellitus defined by

Hba1C>97.5 percentileHba1C>97.5 percentile
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SimulationSimulation--based power calculationsbased power calculations

� Complexity (arbitrary but realistic).

Frailty  
variance 

Genotyping 
error 

Environmental 
error 

Sensitivity 
disease 

phenotype 

Specificity 
disease 

phenotype 

Critical 
P-value 

 
Power 

10 fold R2 = 0.5, 0.8 Reliability = 

0.3-1.0 
89% 97.4% 10-4 

10-7 
80% 
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Genetic Genetic 
main effectsmain effects

Vague candidate: 
p<10-4

GWA: p<10-7

� ≈ 1.7×N

Valid additive 
genetic model
� ≈ 0.8-0.9×N
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GeneGene--lifestyle interactionslifestyle interactions
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GeneGene--lifestyle lifestyle 

interactionsinteractions

Prevalence of
‘at-risk’ life-style 
factor = 20%

MAF for ‘at-risk’ 
genotype = 5%
R2=0.8
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MAF 5% : 25%
4 controls/case
GWA: p<10-10

Gene:geneGene:gene

interactionsinteractions
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Additive genetic modelAdditive genetic model

� Binary or additive genetic model?

� If truly additive, additive model could add substantial
power

� If truly binary, binary model is slightly more powerful

� But, the gain in power is greater when MAF is high

• When MAF is low, very few subjects are homozygote for 
MA, and so the locus is almost binary, and the fall in 
required sample size is small

• But when MAF is high, power is  not such an issue



22

Be specific, not sensitiveBe specific, not sensitive

but only if you have time!!but only if you have time!!
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SpecificitySpecificity

= 100%= 100%

low sensitivitylow sensitivity

All cases are true cases

Even if sensitivity = 10%, 

most controls are from 

the large pool of non-

diseased subjects



24

Sensitivity= Sensitivity= 

100%100%

low specificitylow specificity

All controls are true 

controls

Even if specificity is as 

high as 90%, many

“cases” are from the 

large pool of truly non-

diseased subjects that 

have been misclassified
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How many cases?How many cases?
� Genetic main effects

• 2,000 minimum, 5,000 better

� Lifestyle main effects

• 2,000-20,000

� Gene-lifestyle “interactions”

• Absolute minimum 10,000, often need at least 
25,000, a comprehensive platform needs at least 
50,000

� Pooling and replication!!
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How long is “LONG”?How long is “LONG”?

� Age range at recruitment 40-69 years

� Recruitment over 5 years

� All cause mortality

� Disease incidence (“healthy cohort effect”)

� Migration overseas

� Withdrawal from the study
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0 5 10 15 20 25 30 35 40 45

Stomach cancer

Ovarian cancer (F)

Non-Hodgkins lymphoma

Bladder cancer

Rheumatoid arthritis

Lung cancer 

Parkinson’s disease

Colorectal cancer

Prostate cancer (M)

Breast cancer (F)

Hip fracture

Stroke

COPD

Alzheimer’s disease

MI and coronary death

Diabetes mellitus
D

is
ea

se

Time in years

Time to accumulate 1,000
cases

Additional time to 2,500
cases

Additional time to 5,000
cases or end of study

Additional time to 10,000
cases or end of study

Additional time to 20,000
cases or end of study

How long is “LONG”?How long is “LONG”?
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So how can we get enough power? So how can we get enough power? 

� Can it be achieved at all?

• Recent successes

� Is genetic epidemiology beyond its limits?

• Taubes, Science, 1995

• Protection afforded by ‘Mendelian Randomization’

� Large disease-based biobanks

� Very large cohort-based biobanks

� CDCV v rare alleles with large effects



29

� Conduct studies with optimal designs
• Enhance the quality of individual studies.
• When relevant, use continuous disease-related traits and 
health determinants.

� Increase the size of individual studies

� Promote the conduct of meta-analysis
• Sharing results (traditional meta-analysis): Ideally based on 

published and unpublished results.

• Sharing raw data and samples: Need to promote 
harmonization between biobanks to enable pooling of raw 

information.

So how can we get enough power?So how can we get enough power?
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International biobankInternational biobank

harmonization programsharmonization programs
� P3G
• Public Population Program in Genomics (P3G)

� PHOEBE 
• Promoting Harmonization Of Epidemiological Biobanks in Europe

� BBMRI

• Biobanking and BioMolecular Resources Research Infrastructure

� ISBER
• International Society for Biological and Environmental 
Repositories

� HuGENet
• Human Genome Epidemiology Network
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Biobanks associated with PBiobanks associated with P33GG
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Number of participants
Number of 

studies

Number of participants 

TARGETED

Less than 49 000 47 900,000

50 000 to 99 000  14 1,000,000

100 000 to 499 000 18 2,800,000

500 000 and more 8 4,900,000

Total: 9,600,000

Number of participants targeted 
(recruited or to be recruited) (N=87)

Extracted from P3G Observatory
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Thanks!!Thanks!!
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Reserve slidesReserve slides
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Biobank harmonizationBiobank harmonization
� “A set of procedures that promote, both now and in the 

future, the effective interchange of valid information and 

samples between a number of studies or biobanks, 

accepting that there may be important differences 

between those studies”

“vx jhmkaiwb”

“I understand”

“I UNDERSTAND”“I UNDERSTAND”“I UNDERSTAND”“I UNDERSTAND”

“Je comprends” X

“I comprehend”
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Information common to all the cohorts and Information common to all the cohorts and 

information specific to some of theminformation specific to some of them

• Questionnaire

� Physical and cognitive measures

� Environmental measures

� Biochemical measures

� Governmental databases

� DATASHaPER

• Template to facilitate harmonization between pre-existing biobanks and 

support the design of emerging ones.

  

COMMON 

Biobank 5 

Biobank 1 

Biobank 2 

Biobank 3 

Biobank 4 

At recruitment
and during the follow-up
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