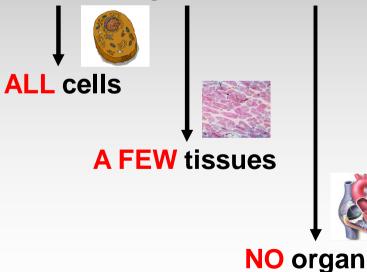
Innovative Technologies for Cryopreservation of Cancer-Relevant Samples for Biobanking

BIOBANKS
Sant Feliu, 1-7 Nov 2008

Ramón Risco Escuela Superior de Ingenieros Universidad de Sevilla (Spain)

BioBank


 $\beta \log = \text{Life Bank} = \text{Store}$

Store of Life

Most of tissues in BioBanks are DEAD!

CryoPreservation

Preservation of Life by Cold

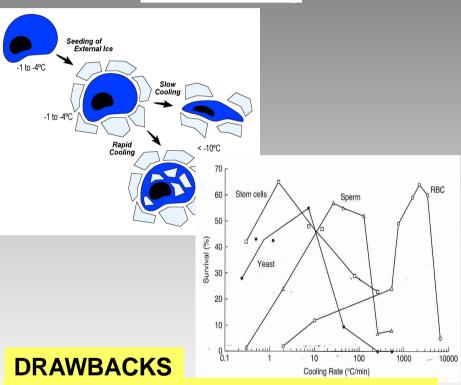
Current Biopsy Preservation vs. Preservation of Functionality

RAC/RH

CycD

Biopsy * AP DNA Sequencing **Quenching in LN2 Immunoassays** Skin-Biopsy

Preservation of Functionality

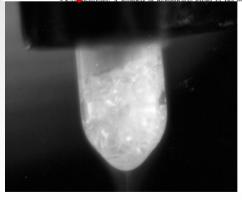

- MOLECULAR PATHWAYS
 - GENE EXPRESSION
 - CORRELATION WITH SECONDARY TUMORS
 - CIRCULATING TUMOR CELLS (CTC)
 - DRUGS INTERFERENCE
 - PROTEOMICS
 - DIAGNOSIS
 - PROGNOSIS

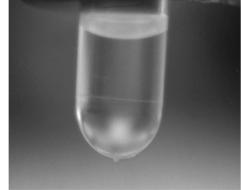
•

Conventional Cryopreservation

Slow Freezing

- Isolated cells in suspension
- Seeding of ice
- Controlling cooling rate
- No tissues
- Osmotic and Mechanical Stress
- Low recovery rates in some cell types


Vitrification


G.M. Fahy et al. / Cryobiology 48 (2004) 22

Composition and properties of 15 model vitrification solutions

Solution number	Solution name ^a	Total % w/v	Gram quantities per							ty	qv^*	K+/Na+e
			D	F		Е	P	ı	PEG	(grams/ ml)		
1	D + PVP	47	41	0		0		6	0	1.0775	6.02	0.85 ± 0.06
2	$D(2)FP_{10} + PVP$	49	5.62	38		0	1	6	0	1.0718	3.28	3.49 ± 0.22
3	$D(1)FP_{10} + PVP$	50.5	1.88			0		6	0	1.0716	2.66	4.13 ± 0.15
4	$D(.8)FP_{10} + PVP$	51).34	1.	0		10	6	0	1.0749	2.49	4.22 ± 0.23
5	D(1)AP ₁₀ + PE		7.08	0	12.92	0	10	0	6	1.0592	3.39	3.51 ± 0.20
6	D(.8)AP ₁₀ + PEG		19	0	31	0	10	0	6	1.0605	3.07	3.31 ± 0.13
7	D(3)FP PEG	49		0	0	6.91	10	0	6	1.0703	3.67	2.07 ± 0.13
8		49	3.39		0	14.61	10	0	6	1.0701	3.10	2.89 ± 0.13
9	.8)EP ₁₀ + 1	48	5.06	0	0	15.94	10	0	6	1.0698	3.12	3.30 ± 0.12
10	$^{1}E^{2}P^{1} + PVP$	48).50	0	0	21.00	10.50	6	0	1.0702	2.82	3.41 ± 0.1
	+ PVP	50	0	0	0	44.00	0	6	0	1.0770	2.11	3.06 ± 0.03
4	PVP	42	0	0	0	0	36.00	6	0	1.0503	3.47	2.96 ± 0.13
3	+PVP	46	20.00	0	0	0	20.00	6	0	1.0640	4.02	2.34 ± 0.1
	Ь	46	0	0	0	20.00	20.00	6	0	1.0619	2.67	2.92 ± 0.03
	$(D(1)A)^{*}P^{*}+PVP$	45	11.10	0	8.40	0	19.50	6	0	1.0572	3.36	3.05 ± 0.16

hese solutions vitrify upon cooling at about 10 °C/min at 100 MPa [18]. The C_V of solution 6 was interpolated. For solution (estimated) C_v was higher than the actual C_v by 1.5% w/v permeating cryoprotectants

Our Technologies

Quartz Capillaries & Slush

VITRIFICATION

cooling rate

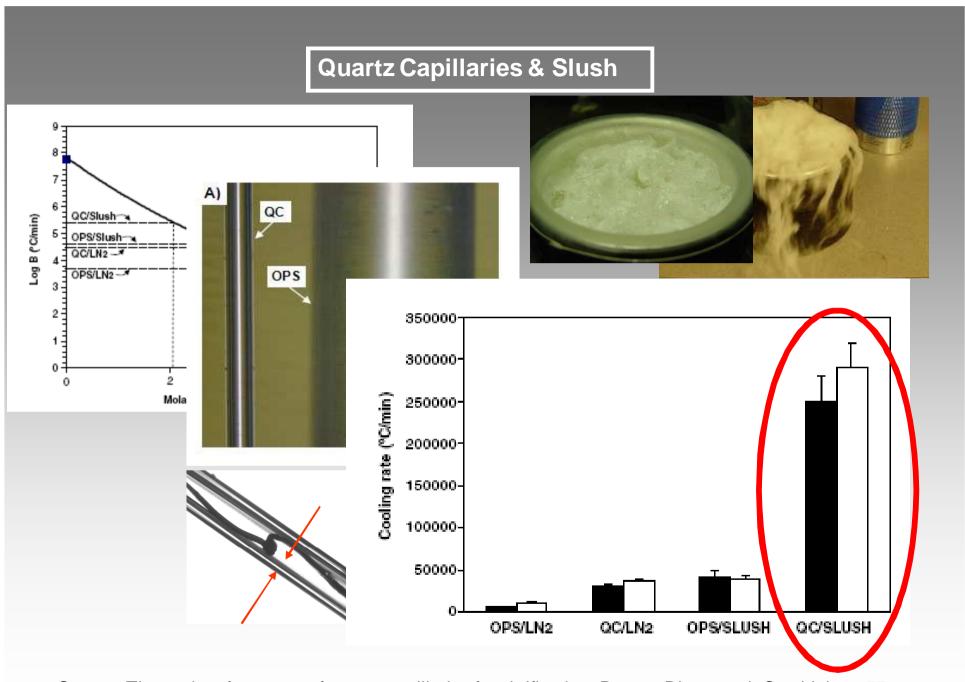
Advantages

SLOW FREEZING

- Low cpa concentration
- Low toxicity

- AdvantagesNo control of
- No seeding
- Low sensitive to the cell type
- Cheap equipment

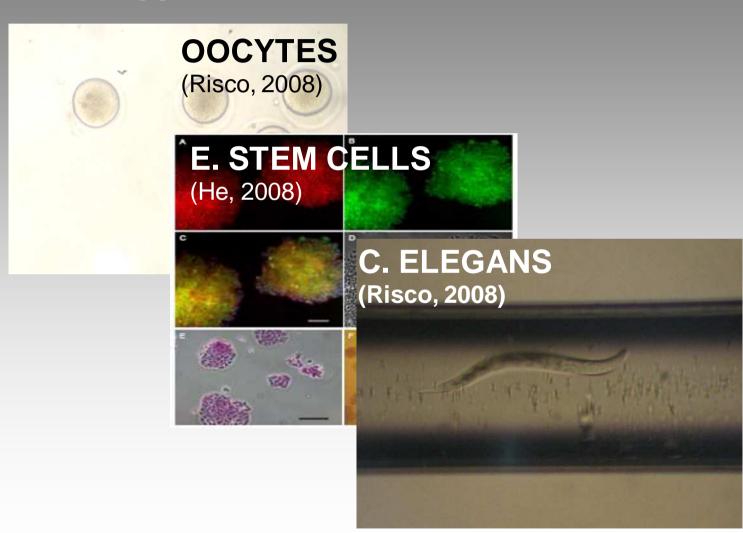
Disadvantages

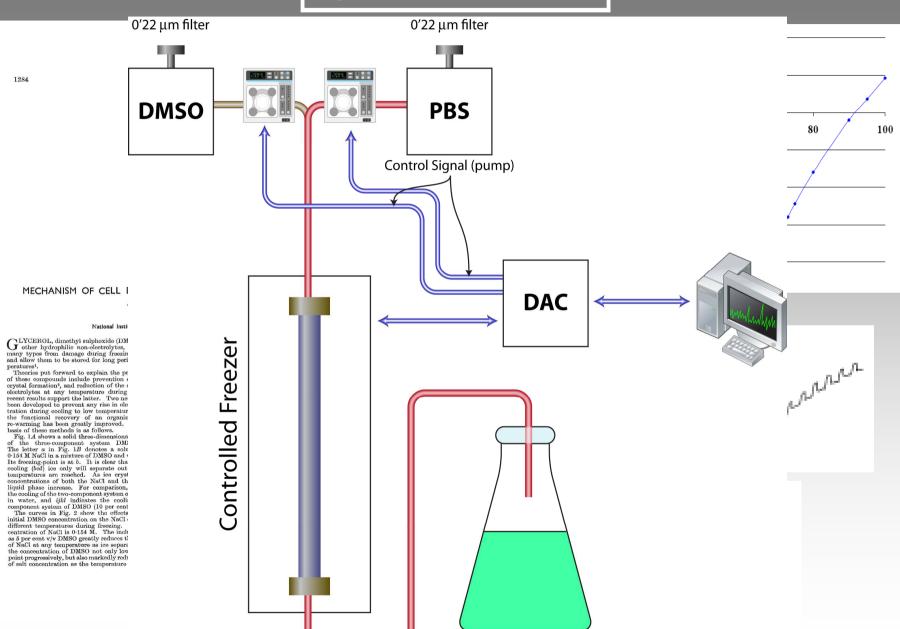

- Cooling rate
- Need of Selling
- Long exposition to epa
- Very cell-type dependent
- Expensive equipment

Disady

High cpa concentration

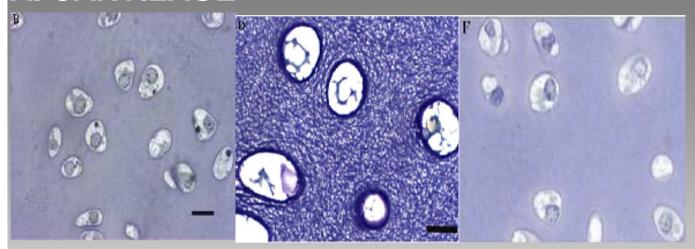
High toxicity


Equilibrium Vitrification

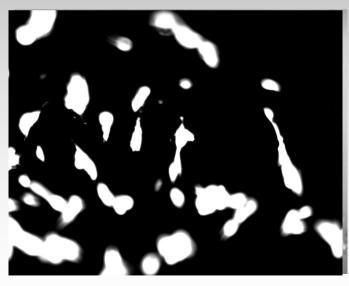

Source: Thermal performance of quartz capillaries for vitrification. Ramon Risco et al. Cryobiology 55 (2007) 222–229

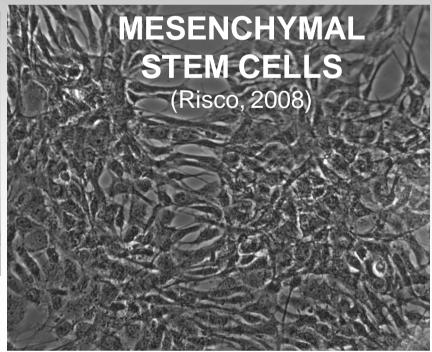
Quartz Capillaries & Slush

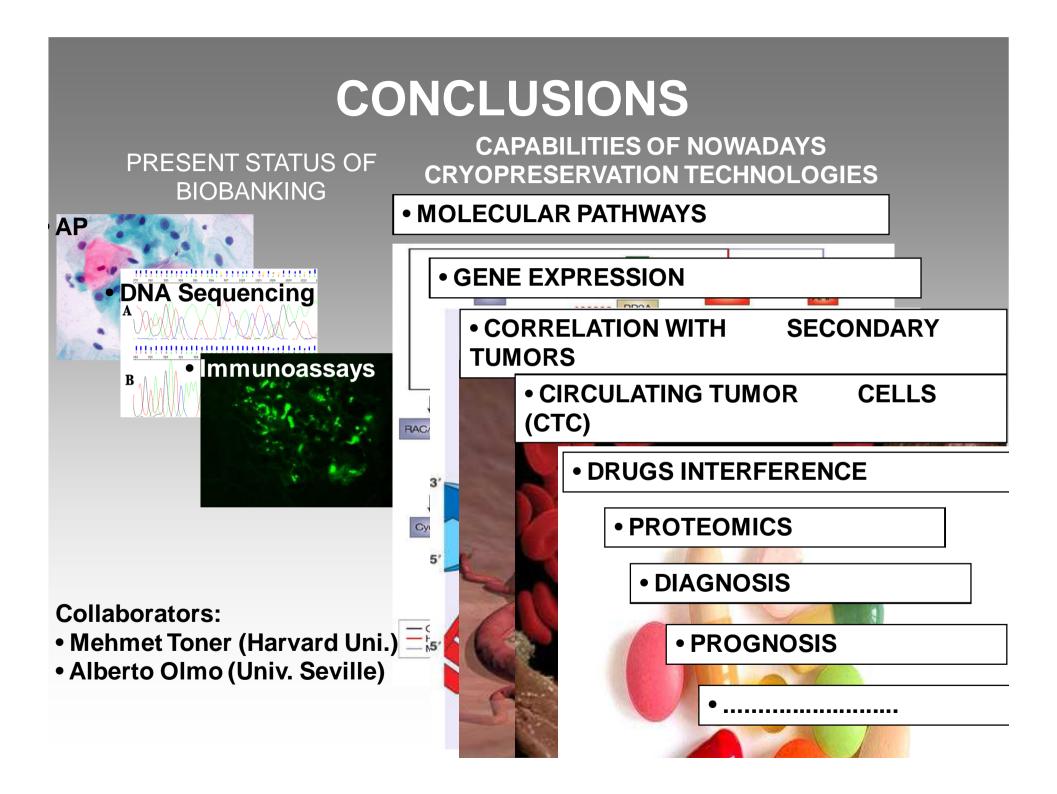
Succesful Applications:



Equilibrium Vitrification




Equilibrium Vitrification


A. CARTILAGE

86.7% ± 1.8% incorporation of 35S sulfate into GAGs (Pegg, 2007)

