Assessment of the Antioxidants and Genotoxicity of *Catha edulis* (khat) Crude Extract Sub-Chronic Administration in rats

A. Al-Zubairi1,3, P. Ismail1, C. P. Pei1 and A. Rahmat2

1 Department of Biomedical Sciences, 2 Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, SDE, Malaysia. 3 Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, University of Sana'a, Sana'a, Yemen. (adelalzubair@gmail.com)

Introduction

The leaves of *Catha edulis* (Celastraceae) (khat), a plant growing wild and cultivated in Eastern Africa and Southern Arabia is chewed for its stimulating and sympathomimetic effects. The alkaloid fraction of khat is very efficiently extracted by chewing, and the major compounds are absorbed in the oral cavity (Toennes et al., 2003). Increase in micronucleated buccal cells were observed in khat chewers and a centromeric signal of aneuploidogenic effect among heavy khat chewers (Kassie et al., 2001). Leaves extract administration was found to inhibit RNA and DNA synthesis in the neurons of chic embryo (Hammouda, 1971) and reduce DNA and RNA contents in liver and brain tissue homogenates in rat (Hondet et al., 1984). Meanwhile, cytotoxicity and mutagenicity to mammalian cells was reported after methanolic khat leaves extract treatment (Al-Andal et al., 1985). Recently the effect of whole khat extract on three leukemia cell lines (HL-60, Jurkat, and NB4 cells) was reported to be cytotoxic and induced a rapid cell death effect (Dimba et al., 2003) and induced apoptosis through a mechanism involving activation of caspase-1, -3 and -8 (Dimba et al., 2004). The aim of this work was to highlight the genotoxic effects of *Catha edulis* subchronic administration in rats.

Methodology

The study design is an adaptation of OECD Guideline No. 408 for a Repeated Dose 90-day Oral Toxicity Study in Rodents. In this study two treated groups (n=13 rats in each) and control group (n=10 rats) were used, 1000 mg/kg body weight and 2000 mg/kg body weight, fed crude khat extract for 13 weeks. Two genotoxicity assays were used in this study namely, Comet Assay and Chromosomal Aberrations Assay, in addition to biochemical analysis of MDA as measured in the form of TBARS and Uric acid, Albumin and HDL as antioxidant substances.

Results

Peripheral blood lymphocytes were cultured in RPMI 1640 with PHA for 72 hr. Colcemid added after 1 hr. Cells harvested, fixed with EOH : Acetic acid, spread on microscope slide, stained with Conventional Gimsa’s Stain and Chromosomal Aberrations scored after counting well spread 50 metaphases.

![Image of Comet Assay](image1.png)

Discussion

In this experiment, we attempted to probe the long-term, sub-chronic (13 weeks) effects of khat consumption in rats by mimicking the regular khat-chewing activity of human. Feeding rats for 13 weeks showed the presence of clastogenic effect of dried khat leaves extract in a high dose (2000 mg/kg body weight) that could be attributed to some of the leaves content. These results showed the presence of chromosome aberrations in the form of chromatid gaps and breaks andacentric fragments. To detect DNA double strand breaks, we used the alkaline version of the Comet Assay. Our study failed to show an effect of khat (*Catha edulis*) leaves crude extract administration on DNA migration of rat lymphocytes in the comet assay. These results were found to be in controversy with the chromosome aberration assay results, in which the main aberrations reported were chromatid gaps and breaks. This discrepancy could be due to the lower sensitivity of comet assay than chromosome aberration assay (if we consider gaps as of biological significance) and the type of chromosome aberrations observed. Meanwhile there is no published work correlating the comet assay to the proportion of aberrant chromosomes. In addition a reduction in the lipid peroxidation product, MDA (detected as TBARS) was observed in the two groups compared to the control group. Further studies needed to highlight the clastogenic effects of *Catha edulis* using chromosomal aberrations assay and micronucleus test in vivo using bone marrow as well as in vitro using human peripheral blood lymphocytes. In addition these results revealed the antioxidant properties of *Catha edulis* after oral administration in rats for 13 weeks, that could be attributed to the high contents of polyphenolic compounds of *Catha edulis* leaves.

References