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Lascar group

T complete first order theory, C |= T – a monster model

group of Lascar strong automorphisms

AutfL(C) =
〈⋃
{Aut(C/M) : M ≺ C}

〉
C Aut(C)

(Lascar ’82 JSL) Lascar group of T :

GalL(T ) = Aut(C)/AutfL(C)

(Lascar, Pillay, Ziegler) GalL(T ) carries a natural
quasi-compact topology (not necessary Hausdorff) and
|GalL(T )| ≤ 2|T |

GalL(T ) “descriptive set-theoretic” invariant of T

Definition (Lascar)

T is G -compact ⇐⇒ the topology on GalL(T ) is Hausdorff
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Model theoretic connected components

(G , ·, . . .) – a group with some first order structure (κ-saturated),
A ⊂ G some small set of parameters

Definition (Pillay, Shelah, . . .)

G 0A =
⋂
{H < G : H is A-def. and [G : H] < ω}

G 00A =
⋂
{H < G : H is A-type def. and [G : H] < κ}

G∞A =
⋂
{H < G : H is Aut(G/A)-inv. and [G : H] < κ}

(also G 000A )

G∞A ⊆ G 00A ⊆ G 0A C G

Example

Let G = (S1, ·,Pn)n∈N, where Pn = {x ∈ S1 : d(x , 0) < 1n} and
G ∗ – saturated extension of G . Then

G ∗ = G ∗0A 6= G ∗00A = G ∗∞A =
⋂

n∈N P∗n – infinitesimals.
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Connected components vs. Lascar group

Consider the following auxiliary structure
G = (G , ·, . . . ,X , ∗),

where X is an additional sort and ∗ : G × X → X is a regular (free
and transitive) action of G on X i.e. X is an “affine” copy of G .
Then

Fact

GalL(Th(G)) = G/G∞∅ o GalL(Th(G , ·, . . .)) (topologically)

Hence, Th(G) is G compact ⇐⇒ Th(G , ·, . . .) is G -compact and
G∞∅ = G 00∅ (i.e. G∞∅ is type definable)
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Motivating problem

Problem

Find a group G with G 00∅ 6= G∞∅ .

G 0∅ , G 00∅ and G∞∅ correspond to the strong types on X in G:

G 0∅ Shelah strong types (just strong types)
G 00∅ Kim-Pillay strong types (the compact strong types)
G∞∅ Lascar strong types (the invariant strong types)

G -compactness is equivalent to
Kim-Pillay strong types = Lascar strong types.

An example with G 00∅ 6= G∞∅ gives us a new kind of
non-G -compact theory, based on the group structure.
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Example: groups with NIP

Definition (Shelah)

T has NIP ⇔ there is no formula ϕ(x , y) ∈ L and
{ai , bw : i < ω,w ⊂

finite
ω} such that C |= ϕ(ai , bw ) ⇐⇒ i ∈ w .

We say, that G∞ exists, if for an arbitrary set of parameters
A ⊂ G , G∞A = G∞∅ . Similarly for G 00 and G 0.
Existence G∞ ⇒ existence G 00 ⇒ existence G 0

Theorem

Assume that G is definable in the structure with NIP (e.g.
o-minimal)

(Shelah) G 00 exists (even for type definable G ), if G is
abelian, then G∞ exists.

(JG) G∞ exists.

(Hrushovski, Pillay) If G is definable amenable, then
G 00 = G∞.
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Another Description of G∞A

Definition

(G , ·) – an arbitrary group, P ⊆ G , n < ω

P is n-thick ⇔ P = P−1 and for every g0, . . . , gn−1 ∈ G there
are i < j < n such that

g−1i gj ∈ P,

P is thick ⇔ P is n-thick for some natural n.

E.g. every subgroup of G with finite index is thick.

Lemma

G∞A =
〈⋂
{P ⊆ G : P is A-def. and thick }

〉
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Example: additive and multiplicative group of a field

What can we say about connected components of an algebraic
groups?

V. Bergelson and D. B. Shapiro proved [PAMS ’92] that if K is an
infinite field and G < K× is with finite index, then G − G = K .
Their proof generalizes to the thick subsets of K×:

Theorem

Let K be an infinite field with some structure (saturated). Then

(K×)∞A − (K×)∞A = K

using indiscernible sequences we have the same for additive
group (K ,+)∞A

−1 · (K ,+)∞A = K

If (K ,+)∞ exists (e.g. K has NIP), then

(K ,+)∞ = K ,

because (K ,+)∞ is an ideal of K .
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When G∞ = G?

Proposition

(G , ·, . . .) – a group with some first order structure, G ∗ – saturated
extension. TFAE

G ∗∞ exists and G ∗∞ = G ∗

there is a natural number N such that for every definable
thick P ⊆ G ∗

PN = G ∗.

Proposition

(G , ·) – a group. TFAE

G ∗∞ exists and G ∗∞ = G ∗, where G ∗ is a monster model of
an arbitrary first order expansion of G

there is a natural number N such that for an arbitrary thick
P ⊆ G

PN = G .
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Absolutely connected groups

Definition

G is N-absolutely connected (N-ac) if for every thick P ⊆ G

PN = G .

G is absolutely connected if G is N-absolutely connected for
some natural N.

Let CN = {N-absolutely connected groups} and
C∞ =

⋃
N<ω CN = {absolutely connected groups}.

The strategy for solving the main problem:

Proposition

If for every natural N, C∞ 6= CN , then there is a group G with

G∞∅ 6= G 00∅ .
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Examples of absolutely connected groups

Example

1. (κ > ω) Symκ(Ω) = {σ ∈ Sym(Ω) : | supp(σ)| < κ} is 16-ac

2. if V – a vector space over a division ring with dim(V ) =∞,
then GL(V ) is 128-ac

3. K – infinite field, n < ω, SLn(K ) is 24-ac

Proof.

We use an auxiliary class of weakly simple groups. Let

GN(G ) = {g ∈ G :
(

g G ∪ g−1G
)≤N

= G}.
A group G is N-weakly simple if GN(G ) is ”big” in some sense:

G \ GN(G ) is not thick.
It can be proved that N-weak simplicity ⇒ 4N-ac.
Now use description of the conjugacy classes: in 1. results of
Bertram ’73 and Moran ’76; in 2. — Tolstykh ’06; in 3. — Lev
’96.
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Chevalley groups

Absolutely connectedness of SLn(K ) suggests to look at Chevalley
groups. Ellers, Gordeev and Herzog determined “covering
numbers” for a quasisimple Chevalley groups:

Definition (Arad, Herzog ’85)

G – simple nonabelian group. The covering number cn(G ) of G is
the smallest natural N (or ∞), such that C N = G for every
nontrivial conjugacy class C of G .

Theorem (Ellers, Gordeev, Herzog, Israel J. of Math. ’99)

There is a positive integer d such that cn(G ) ≤ d · rank(G ), for
every quasisimple proper Chevalley group G.
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Chevalley groups cd.

It means, that

∀C conjugacy class of G , C d ·rank(G) = G .

In my case, G is N-weakly simple (so 4N absolutely connected) iff

G \ GN(G ) = {g ∈ G :
(

g G ∪ g−1G
)≤N

= G} is not thick. i.e.

∀almost allC conjugacy class of G , (C ∪ C−1)N = G ,

where “almost all” means that the set of failures is not thick (i.e.
is rather small). It seems that methods of Ellers, Gordeev, Herzog
give that all Chevalley groups are 192-weakly simple (so
768-absolutely connected).
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Muranov’s groups

Theorem

Absolutely connected groups are perfect (i.e. G = [G ,G ]).

Question

Do absolutely connected groups have a finite commutator width?

Every weakly simple group has a finite commutator width.

Muranov [’07] constructed (using small cancellation theory) a
collection of simple torsion free groups {Mn}n<ω satisfying

Mn is (2n + 2)-boundedly simple (so (8n + 8)-ac),
the commutator width of Mn is between (n + 1) and (2n + 2).

Using Muranov’s groups we can prove:

Proposition

Either ∀N, C∞ 6= CN (so there is a group G with G∞∅ 6= G 00∅ ) or
there is an absolutely connected group an with infinite commutator
width.
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G 0 in finitely generated virtually nilpotent groups

Let G be a finitely generated group with nilpotent subgroup of
finite index (virtually nilpotent group). Martinez [TAMS ’94]
proved (using the positive solution of the restricted Burnside
problem) that the set of nth powers ValX n (G ) = {g n : g ∈ G}
generates the subgroup Gn of G in finitely many steps. From
model theoretical point of view, this gives us an existence and
description of G 0.

Namely, for an arbitrary first order expansion
(G , ·, . . .) of G , G 0 exists (in a saturated extension) and

G 0 =
⋂
n∈N

Gn.

The next step would be to find a similar description of G 00 G∞.

Problem

Describe G 00 and G∞ for finitely generated virtually nilpotent
group G .
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Z case

This problem is unclear even for integers Z and has connections to
additive combinatorics. The natural candidate for (Z,+, . . .)∞ is⋂

n∈N
n · Z∗

The answer is closely related to the solution of the following:

Problem

Is there a universal constant C, such that for an arbitrary partition
Z = A1 ∪ . . . ∪ An, there is natural number m such that, the set
P = {a− b : a, b ∈ Ai , for 1 ≤ i ≤ n} has the property that
P + . . .+ P︸ ︷︷ ︸

C

contains m · Z?

By van der Waerden theorem, some Ai contains an arbitrary long
arithmetic progression. Hence P contains arbitrary (big) part of
mZs, but m may tend to infinity.
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