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Definition (Kontsevich, Zagier)

Periods are values of absolutely convergent integrals over open
semialgebraic subsets of Rn of rational functions with rational coefficients.

Semialgebraic: definable in (R,+, ·)
In this talk always assume semialgebraic sets to be definable without
parameters.
Open semialgebraic: {x̄ :

∧
i<k pi (x̄) > 0, pi (x̄) ∈ Q[X̄ ]}.

Examples

π, q, ln(q), q ∈ Q are periods.
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Question

What about e, 1
π?

Clearly there are only countably many periods and they form a Q-algebra.

Theorem (Yoshinaga)

Periods are elementary real numbers.

Using diagonal arguments, one can construct non-elementary real
numbers, so numbers which are not periods.
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Definition

A class F of functions f : Nn −→ N, n ∈ N, is called good if it contains

1 the constant functions,

2 the projections (x1, . . . , xn) 7→ xi ,

3 modified difference x−̇y .

and is closed under composition and bounded summation, i.e. if
g(x̄ , i) ∈ F , then also f (x̄ , k) =

∑k
i=0 g(x̄ , i) ∈ F .

f : Nn −→ Nm is in F if each fi , i = 1 . . . n is.

The smallest good class is the class of low functions.
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The smallest good class also closed under bounded products

f (x̄ , y) =

y∏
i=0

g(x̄ , i),

or – equivalently – the smallest good class which contains n 7→ 2n, is the
class of elementary functions.
The elementary functions are the third class E3 of the Grzegorczyk
hierarchy.
We have:

LOW ( E2 ( E3 = ELEM ⊆ . . . ( prim.rec . ( rec

f low ⇒ f (n) ≤ nk for some k, i.e. polynomially bounded.
f elementary ⇒ f hyperexponentially bounded.
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Coding countable sets

Call a set X an F–retract (of Nn) if there are functions ι : X → Nn and
π : Nn → X with π ◦ ι = id and ι ◦ π ∈ F .

We define a function f : X → X ′ to be in F if ι′ ◦ f ◦ π : Nn → Nn′
is.

Z is a low retract of N in a canonical way. We turn Q into a low retract of
Z× N by setting ι(r) = (z , n), where z

n is the unique representation of r
with n > 0 and (z , n) = 1. Define π(z , n) as z

n if n > 0 and as 0 otherwise.
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Computable reals

Definition

A number α ∈ R is F-computable if there is an F–function f : N −→ Q
with |f (k)− α| < 1

k .

(Unfortunately,) many ’natural’ numbers are low: π, e etc (Skordev, 2008)
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Computable reals

Definition

A number α ∈ R is F-computable if there is an F–function f : N −→ Q
with |f (k)− α| < 1

k .

(Unfortunately,) many ’natural’ numbers are low: π, e etc (Skordev, 2008)

Ziegler and Tent (Münster and Freiburg) Computable functions on the reals Bȩdlewo, August 2009 7 / 20



Computable functions

Notation: For O ⊆ Rn open and k ∈ N define

Ok = {x̄ ∈ O : |x | ≤ k , dist(Rn \ O, x̄) ≤ 1/k}.

Then Ok is compact and

O =
⋃
k∈N

Ok .

Definition

The function F : O −→ R is F-computable if there are F-functions
d : N −→ N and f : Qn × N −→ Q such that for all x ∈ Ok , a ∈ Qn we
have

|x − a| < 1

d(k)
⇒ |F (x)− f (a, k)| < 1

k
. (0.1)
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Properties of F -computable functions

1 F-computable functions are continuous.

2 F-computable functions take F-reals to F-reals.
If |α− g(k)| < 1/k and f , d are witnesses for F to be in F , then
|F (α)− f (g(d(k)), k)| < 1/k for sufficiently large k.

3 F-computable functions are (somewhat) closed under composition:
if F ,G ∈ F , then F ◦ G ∈ F if F is uniformly in F , i.e. if for
x ∈ O, |x | ≤ k , a ∈ Qn we have

|x − a| < 1

d(k)
⇒ |F (x)− f (a, k)| < 1

k
.

Note that there is an F-function β with |G (Ok)| < β(k).
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Lemma 1

Continuous ( 0-definable) semialgebraic functions are low on semialgebraic
open sets.

(Sketch of proof) Let O be open semialgebraic, F semialgebraic and
continuous on O. On O2k , the smallest real valued function d with

|x − a| < 1

d(k)
⇒ |F (x)− F (a)| < 1

2k

is 0-definable and hence polynomially bounded. Also F is polynomially
bounded. Hence for a ∈ O2k we define f (a, k) as the unique

b ∈ {−km,−km +
1

2k
, . . . , km − 1

2k
, km}

with F (a) ∈ [b, b + 1
2k ). So if x ∈ Ok with |x − a| < 1

d(k) we have a ∈ O2k

and

|F (x)− f (a, k)| ≤ |F (x)− F (a)|+ |F (a)− f (a, k)| < 1

k
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Integration Theorem

Theorem 2

Let G ,H : O −→ R be F-functions with G < H on O. Put

OH
G = {(x̄ , y) : G (x̄) < y < H(x̄)}.

Let F : OH
G −→ R be in F and assume that |F (x̄ , y)| < β(x̄) for some

F-function β.
Then

I (x) =

∫ H(x)

G(x)
F (x , y) dy

is an F–function O → R.

Approximate Riemann integral. However, we cannot sum up series of
rational numbers as a low function.
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Sums of rational numbers

Use:

Lemma

If g : Nn+1 → Q is in F , there is an F–function f : Nn × N>0 → Q such
that ∣∣∣f (x , y , k)−

y∑
i=0

g(x , i)
∣∣∣ < 1

k
.
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Periods

Theorem (T.-Z., Yoshinaga)

Periods are low reals.

Lemma (Yoshinaga)

Periods are differences of volumes of bounded open 0-definable
semialgebraic sets.

Now the theorem follows from Lemma 1, Theorem 2 and Fubini.
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Inverse Function Theorems

Theorem

Suppose c0, c1 are F-reals and F : O = (c0, c1) −→ V ⊆ R is a
homeomorphism in F . Then F−1 is in F provided there is an F-function
d ′ : N −→ N such that for all y , y ′ ∈ Vk

|y − y ′| < 1

d ′(k)
⇒ |F−1(y)− F−1(y ′)| < 1/k . (0.2)

Corollary

exp(x) is low on (−∞, r) for any r ∈ R.

(Sketch of proof) ln : (0, exp(r)) −→ (−∞, r) is low by Lemma 1,
Theorem 2. As exp(x) is bounded on (−∞, r), it satisfies (0.2).
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Corollary

If α ∈ R is an F-real so is exp(α).

Corollary

The low reals form a real closed field of infinite transcendence degree.

(Sketch of proof) By Lemma 1, the low reals form a field.
As the real zeros of real polynomials are piecewise continuous in the
coefficients, these piecewise functions and hence its values on low numbers
are low, so the field is real closed.
If a0, . . . an are Q–linearly independent algebraic numbers, then
exp(a0), . . . exp(an) are low and algebraically independent by
Lindemann-Weierstraß.
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If a0, . . . an are Q–linearly independent algebraic numbers, then
exp(a0), . . . exp(an) are low and algebraically independent by
Lindemann-Weierstraß.
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Note that exp is not low on all of R. However, by a variant of the Inverse
Function Theorem, exp is elementary on R:

If O ⊆ Rn is F–approximable and F : O −→ V ⊆ Rm is a
homeomorphism in F such that F−1 satisfies (0.2) and is F–compact (i.e.
for some β ∈ F we have F−1(Vk) ⊆ Oβ(k)), then F−1 ∈ F .

In this way, we can also show that the complex function exp(z) is low on
each half-space {z | Re(z) < s} and elementary on C (= R2).
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Holomorphic functions

Proposition

Let F (z) =
∑∞

i=0 aiz
i be a complex power series with radius of

convergence ρ and let 0 < b < ρ be an F–real. Then F restricted to the
open disc {z : |z | < b} belongs to F if and only if (aib

i )i∈N is an
F–sequence of complex numbers.

Lemma (Speed-Up Lemma)

Suppose (an) ∈ C is a sequence and that 0 < b < 1 is an F–real. Then
(anbn) is an F–sequence if (anb2n) is.

Theorem (Analytic Continuation)

Let F be a holomorphic function defined on an open domain D ⊂ C. If F
is in F on some non–empty open subset of D, it is in F on every compact
subset of D.
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Corollary

Let F be holomorphic on a punctured disk D• = {z | 0 < |z | < r}. If 0 is a
pole of F and F is in F on some non–empty open subset of D•, then F is
F on every proper punctured subdisc D ′• = {z | 0 < |z | < r ′}.

(Sketch of proof) If 0 is a pole of order k, F (z)zk is holomorphic on
D = {z |z | < r}. By the theorem F (z)zk is in F on any disc
D ′ = {z : |z | < r ′}, r ′ < r . Since z−k is low on D ′•, F is in F on D ′•.

Note that if 0 is an essential singularity of F , then F is not low on D• as
otherwise the absolute value of F on {z | 0 < |z | < 1

k } would be bounded
by a polynomial in k.

Ziegler and Tent (Münster and Freiburg) Computable functions on the reals Bȩdlewo, August 2009 18 / 20
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Zeta–function

Recall that for Re(z) > 1, the Riemann Zeta–function is given by

ζ(z) =
∞∑

n=1

1

nz
.

The function ( 1
x )y is low on (1,∞)× {z | Re(z) > 0} ⊆ R× C.

Thus 1
nz , (n = 1, 2, . . .) is a low sequence of functions defined on

{z | Re(z) > 0}.
With t = Re(z) we have the estimate∣∣∣ζ(z)−

N∑
n=1

1

nz

∣∣∣ ≤ ∫ ∞
N

1

x t
dx =

1

(t − 1)Nt−1
.

Then ζ(z) is low on every {z | Re(z) > s}, (s > 1).

Corollary

The Zeta function ζ(z) is low on any punctured disk {z | 0 < |z − 1| < r}.
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Gamma function and open questions

Similarly, the Gamma function

Γ(z) =

∫ ∞
0

t−1+z exp(−t) dt

is low on every set {z : |z | < r} \ S where S = {−n | n ∈ N} denotes the
set of poles of Γ.
Since n! grows too fast, Γ is not low on C \ S .

Question

Is ζ(z) elementary on C \ {1}.
(not low because ∞ is an essential singularity)

Is Γ elementary on C \ S.
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