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Exponential rings

Definition: An exponential ring, or E-ring, is a pair (R, E) with R
a ring (commutative with 1) and

E:(R,+) = (U(R),)

a map of the additive group of R into the multiplicative group of
units of R satisfying

Q@ E(x+y)=E(x)-E(y) forall x,y e R
Q@ E(0)=1.

(K, E) is an E-field if K is a field.
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Examples:

Q0 (R,e¥); (C,e);
@ (R, E) where R is any ring and E(x) =1 for all x € R.

© (S[t], E) where S is E-field of characteristic 0 and S[t] the
ring of formal power series in t over S. Let f € S[t], where
f=r+fwthres$s

o

E(f) = E(r)- ) _(f)"/n!

n=0
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Exponential polynomial ring

Construction

Let (K, E) be an E-field, the ring of E-polynomials in the
indeterminates X = Xi, ..., X,, denoted by K[Y]E, is an E-ring
constructed by recursion:

(Ri, +, )k>—1, (Bks+H)k>o and  (Ex)k>—1

Step 0:
R.1=K
Ro = (K[Y]a_h ')a By = (y)v Ry=R16&ByE.1:R1— Ry
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Inductive step:

Suppose k > 0 and Ri_1, Rk, Bx and Ex_1 have been defined in
such a way that:

Rk = Rk—1 @ By, Ex—1: (Rk—1,+) — (U(Rx), ")

Let
t: (Bk7+) - (tBkv )

an isomorphism. Define

So
Ry is a subring of Ry41

and
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Define

E, : (Rk,+) — (U(Rk+1), ) s.t.

Ei(x) = Ex_1(r) - tP, for x =r+ b, r € Rk_1 and b € By.

RhCRRCRC---CRyC---
Then the E-polynomial ring is:

K[Y]E — ||£n Rk — U Rk — K[Y][tBo’cBBléB...ﬁEBk...]
k=0

and the E-ring morphism on K[X]E is the following:
E(x) = Ex(x) if x€ Ry, ke N
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Theorem (Folklore): Let (R, E) be an exponential domain. Then
R[X]E is an integral domain whose units are u - E(f), where u is

invertible in R and f € R[X]E.
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Factorization theorem

Let K be an ACF, where char(K) =0, if f € K[X1,...,Xs] is an
irreducible polynomial over K, it can happen that for some
P,y fin € Ny, F(X]?, ..., XK") becomes reducible.

Ritt (1927) and Gourin (1930) studied factorizations of

ﬂlealx + ...+ ﬂkeakx

Definition: A polynomial f(X) is power irreducible (over K) if for
each 7i € N", f(X") is irreducible.

XMoo X where my, ..., m, € Z.

Definition: A polynomial f(X) is effectively 1-variable or simple
if f =71 -g(m2), where 71, 7 are monomials (possibly with
negative exponents), and g is a polynomial with constant term
different from zero.
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Factorization theorem

van der Poorten (1995) gives a uniform bound for the number of
irreducible factors of
FOXE, o X

for f(X,...,Xy) not effectively 1-variable, and arbitrary
U1, tn € Np. The bound depends only on

M = ITlaX{C/X17 ey an}
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The basic idea

We denote by U[G] = K[X][tBo®®Bn]. Let f(X) € U[G], so

h
F(X) = amt™,
m=1

where a,, € U and b, € G

Let I' be the abelian additive group generated by by, ..., by.
supp(f) = Q-vector space generated by .

Let {B1,...,0/} a Z-base of T.

We can consider f as polynomial in t%1, ... % with coefficients
in U= K[X]. We use formally wy,...,w, for t% ... t% and we
consider f as an element of Ufwy, ..., w].
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Almost Unique Factorization Theorem

Theorem (DMT):

Let f(X) € K[X]E, where (K, E) is an algebraically closed E-field
of char 0 and f # 0. Then f factors, uniquely up to units and
associates, as finite product of irreducibles of K[X], a finite
product of irreducible polynomials F; in K[X]E with support of
dimension bigger than 1, and a finite product of polynomials G;
where supp(Gj1) # supp(Gj2), for j1 # j» and whose supports are
of dimension 1.

Remark:

© If a polynomial f factors as f; - f, then supp(f;) C supp(f),
where | =1, 2.

@ If a polynomial f divides a polynomial with support of
dimension 1 then the dimension of support of f is 1.
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Pseudo exponential fields or Zilber fields

Zilber's programme: Look for a canonical algebraically closed
field of characteristic 0 with exponentiation.

K is a Zilber field if:

@ K is an algebraically closed field of characteristic 0;

e E:(K,+) — (K*,:) is a surjective homomorphism and
there is w € K transcendental over Q such that ker E = Zw;

@ Schanuel’s Conjecture (SC) Let A1,...,\, € K be linearly
independent over Q. Then Q(A1,..., An, E(A1), ..., E(An))
has transcendence degree (t.d.) at least n over Q;

@ Axioms giving criteria for solvability of systems of exponential
equations.
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Theorem (Zilber):

The class of pseudo exponential fields has a unique model in every
uncountable cardinality.

Zilber's Conjecture:

The unique model of cardinality 2% is (C, E).
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@ Does (C, E) satisfy properties which will follow directly from
Zilber's axioms?

@ Does (K, E) satisfy properties which are known for (C, E)?
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no solutions in C?



© When does the polynomial F(zy,...,z,) € C[z1, ..., z,]F has
no solutions in C?

Q If A, ..., ;s 01, ny Clye v oy Cmy d1, ..., dy € C, when
does the system

ciexp(A1) +...chexp(An) =0

diexp(pi) + ... dmexp(pm) =0

have infinitely many solutions in C?
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Answers to first question

© Theorem (Henson and Rubel 1984):

Let F(zi,...,2n) € Clz,...,z,)E.

F(z1,...,2n) has no solution in C iff F(zy,...,z,) = e®(2)
where G(z1,...,2,) € Clz1, ..., z,]E.

© Theorem (DMT):

Let F(z1,...,2n) € K[z1,...,2,]F, where K is a Zilber field,

then

F(z1,...,z,) has no root in K iff F(z1,...,z,) = e"(z2),
where H(zy,...,2,) € K[z1,...,z)E.

Proof:

We use algebraic methods
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Answer to second question

@ Unknown, but there is a nice conjecture:

Shapiro’s Conjecture (1958): If two exponential
polynomials f, g of the form

f=ceM?+ .. +ce’? g = bef? + ... + byetm?

where ¢;, bj, A, pij € C have infinitely many zeros in common
they are both multiples of some exponential polynomial of the
same kind.
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Special case of Shapiro’s Conjecture in C

Theorem (A.J. van der Poorten, R. Tijdeman) (1):

Let f(z) = Zajeﬁfz, with «j, §; € C, be a simple exponential
polynomial and let g(z) be an arbitrary exponential polynomial
such that f(z) and g(z) have infinitely many common zeros. Then
there exists an exponential polynomial h(z), with infinitely many
zeros, such that h is a common factor of f and g in the ring of
exponential polynomial.

Remark:

The factorization theorem implies that we need to consider only
two cases of the Shapiro problem.
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Theorem (Skolem, Malher, Lech):

Let f(z) = >_ aje’Z, be an exponential polynomial, where

a, 3 € K where K is a field of characteristic 0. If f(z) vanishes for
infinitely many integers z = z;, then there exists an integer d and
certain set of least residues modulo d, di, ..., d; such that f(z)
vanishes for all integers z = d;j(mod d), for i =1,...,1, and f(z)
vanishes only finitely often on other integers.

Theorem (A.J. van der Poorten, R. Tijdeman):

Theorem (1) is equivalent to the Skolem-Malher-Lech Theorem
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Special case of Shapiro’s Conjecture in K

Theorem (DMT):

Let f(z) = Y aje??, with aj, 3 € K, where K is a Zilber Field,
be a simple exponential polynomial and let g(z) be an arbitrary
exponential polynomial such that f(z) and g(z) have infinitely
many common zeros. Then there exists an exponential polynomial
h(z), with infinitely many zeros, such that h is a common factor of
f and g in the ring of exponential polynomial.



