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Exponential rings

Definition: An exponential ring, or E -ring, is a pair (R,E ) with R
a ring (commutative with 1) and

E : (R,+) → (U(R), ·)

a map of the additive group of R into the multiplicative group of
units of R satisfying

1 E (x + y) = E (x) · E (y) for all x , y ∈ R

2 E (0) = 1.

(K ,E ) is an E -field if K is a field.
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Examples

Examples:

1 (R, ex); (C, ex);

2 (R,E ) where R is any ring and E (x) = 1 for all x ∈ R.

3 (S [t],E ) where S is E -field of characteristic 0 and S [t] the
ring of formal power series in t over S . Let f ∈ S [t], where
f = r + f1 with r ∈ S

E (f ) = E (r) ·
∞∑

n=0

(f1)
n/n!
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Exponential polynomial ring

Construction

Let (K ,E ) be an E -field, the ring of E -polynomials in the
indeterminates X = X1, . . . ,Xn, denoted by K [X ]E , is an E -ring
constructed by recursion:

(Rk ,+, ·)k≥−1, (Bk ,+)k≥0 and (Ek)k≥−1

rings ab groups E -morphisms

Step 0:

R−1 = K

R0 = (K [X ],+, ·), B0 = (X ), R0 = R−1 ⊕ B0 E−1 : R−1 −→ R0
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Construction

Inductive step:

Suppose k ≥ 0 and Rk−1, Rk , Bk and Ek−1 have been defined in
such a way that:

Rk = Rk−1 ⊕ Bk , Ek−1 : (Rk−1,+) → (U(Rk), ·)
Let

t : (Bk ,+) → (tBk , ·)
an isomorphism. Define

Rk+1 = Rk [tBk ] (group ring).

So
Rk is a subring of Rk+1

and

Rk+1 = Rk ⊕ Bk+1.
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Ek : (Rk ,+) → (U(Rk+1), ·) s.t.

Ek(x) = Ek−1(r) · tb, for x = r + b, r ∈ Rk−1 and b ∈ Bk .

R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ Rk ⊂ · · ·
Then the E -polynomial ring is:

K [X ]E = lim
k

Rk =
∞⋃

k=0

Rk = K [X ][tB0⊕B1⊕...⊕Bk ...]

and the E -ring morphism on K [X ]E is the following:

E (x) = Ek(x) if x ∈ Rk , k ∈ N
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Invertible elements

Theorem (Folklore): Let (R,E ) be an exponential domain. Then

R[X ]E is an integral domain whose units are u · E (f ), where u is

invertible in R and f ∈ R[X ]E .
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Factorization theorem

Let K be an ACF, where char(K ) = 0, if f ∈ K [X1, . . . ,Xn] is an
irreducible polynomial over K , it can happen that for some
µ1, . . . , µn ∈ N+, f (Xµ1

1 , . . . ,Xµn
n ) becomes reducible.

Ritt (1927) and Gourin (1930) studied factorizations of

β1e
α1x + . . . + βkeαkx

Definition: A polynomial f (X ) is power irreducible (over K ) if for

each µ ∈ Nn, f (X
µ
) is irreducible.

monomial: Xm1
1 · . . . · Xmn

n , where m1, . . . ,mn ∈ Z.

Definition: A polynomial f (X ) is effectively 1-variable or simple
if f = τ1 · g(τ2), where τ1, τ2 are monomials (possibly with
negative exponents), and g is a polynomial with constant term
different from zero.
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Factorization theorem

van der Poorten (1995) gives a uniform bound for the number of
irreducible factors of

f (Xµ1
1 , . . . ,Xµn

n )

for f (X1, . . . ,Xn) not effectively 1-variable, and arbitrary
µ1, . . . , µn ∈ N+. The bound depends only on

M = max{dX1 , . . . , dXn}
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f (X ) =
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where am ∈ U and bm ∈ G

Let Γ be the abelian additive group generated by b1, . . . , bh.

supp(f ) = Q-vector space generated by Γ.

Let {β1, . . . , βl} a Z-base of Γ.

We can consider f as polynomial in tβ1 , . . . , tβl , with coefficients
in U = K [X ]. We use formally ω1, . . . , ωl for tβ1 , . . . , tβl , and we
consider f as an element of U[ω1, . . . , ωl ].
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Almost Unique Factorization Theorem

Theorem (DMT):

Let f (X ) ∈ K [X ]E , where (K ,E ) is an algebraically closed E -field
of char 0 and f 6= 0. Then f factors, uniquely up to units and
associates, as finite product of irreducibles of K [X ], a finite
product of irreducible polynomials Fi in K [X ]E with support of
dimension bigger than 1, and a finite product of polynomials Gj

where supp(Gj1) 6= supp(Gj2), for j1 6= j2 and whose supports are
of dimension 1.

Remark:

1 If a polynomial f factors as f1 · f2 then supp(fi ) ⊆ supp(f ),
where i = 1, 2.

2 If a polynomial f divides a polynomial with support of
dimension 1 then the dimension of support of f is 1.
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Pseudo exponential fields or Zilber fields

Zilber’s programme: Look for a canonical algebraically closed
field of characteristic 0 with exponentiation.

K is a Zilber field if:

K is an algebraically closed field of characteristic 0;

E : (K ,+) −→ (K×, ·) is a surjective homomorphism and
there is ω ∈ K transcendental over Q such that ker E = Zω;

Schanuel’s Conjecture (SC) Let λ1, . . . , λn ∈ K be linearly
independent over Q. Then Q(λ1, . . . , λn,E (λ1), . . . ,E (λn))
has transcendence degree (t.d.) at least n over Q;

Axioms giving criteria for solvability of systems of exponential
equations.
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Questions

1 When does the polynomial F (z1, . . . , zn) ∈ C[z1, . . . , zn]
E has

no solutions in C?

2 If λ1, . . . , λm, µ1, . . . , µn, c1, . . . , cm, d1, . . . , dn ∈ C, when
does the system

c1exp(λ1) + . . . cnexp(λn) = 0

d1exp(µ1) + . . . dmexp(µm) = 0

have infinitely many solutions in C?
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Answers to first question

1 Theorem (Henson and Rubel 1984):

Let F (z1, . . . , zn) ∈ C[z1, . . . , zn]
E .

F (z1, . . . , zn) has no solution in C iff F (z1, . . . , zn) = eG(z1,...,zn)

where G (z1, . . . , zn) ∈ C[z1, . . . , zn]
E .

1 Theorem (DMT):

Let F (z1, . . . , zn) ∈ K [z1, . . . , zn]
E , where K is a Zilber field,

then

F (z1, . . . , zn) has no root in K iff F (z1, . . . , zn) = eH(z1,...,zn),

where H(z1, . . . , zn) ∈ K [z1, . . . , zn]
E .

Proof:

We use algebraic methods
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Answer to second question

2 Unknown, but there is a nice conjecture:

Shapiro’s Conjecture (1958): If two exponential
polynomials f , g of the form

f = c1e
λ1z + . . . + cne

λnz , g = b1e
µ1z + . . . + bmeµmz ,

where ci , bj , λi , µj ∈ C have infinitely many zeros in common
they are both multiples of some exponential polynomial of the
same kind.
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Special case of Shapiro’s Conjecture in C

Theorem (A.J. van der Poorten, R. Tijdeman) (1):

Let f (z) =
∑

αje
βjz , with αj , βj ∈ C, be a simple exponential

polynomial and let g(z) be an arbitrary exponential polynomial
such that f (z) and g(z) have infinitely many common zeros. Then
there exists an exponential polynomial h(z), with infinitely many
zeros, such that h is a common factor of f and g in the ring of
exponential polynomial.

Remark:

The factorization theorem implies that we need to consider only
two cases of the Shapiro problem.
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Integers solutions

Theorem (Skolem, Malher, Lech):

Let f (z) =
∑

αje
βjz , be an exponential polynomial, where

α, β ∈ K where K is a field of characteristic 0. If f (z) vanishes for
infinitely many integers z = zi , then there exists an integer d and
certain set of least residues modulo d , d1, . . . , dl such that f (z)
vanishes for all integers z ≡ di (mod d), for i = 1, . . . , l , and f (z)
vanishes only finitely often on other integers.

Theorem (A.J. van der Poorten, R. Tijdeman):

Theorem (1) is equivalent to the Skolem-Malher-Lech Theorem
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Special case of Shapiro’s Conjecture in K

Theorem (DMT):

Let f (z) =
∑

αje
βjz , with αj , βj ∈ K , where K is a Zilber Field,

be a simple exponential polynomial and let g(z) be an arbitrary
exponential polynomial such that f (z) and g(z) have infinitely
many common zeros. Then there exists an exponential polynomial
h(z), with infinitely many zeros, such that h is a common factor of
f and g in the ring of exponential polynomial.
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