Modeling an extreme precipitation event over the southwest coast of Black Sea: impact of SSTs and cumulus parameterization schemes

Deniz Bozkurt
Istanbul Technical University
Eurasia Institute of Earth Sciences
bozkurtd@itu.edu.tr

Contributors: Baris Onol(1) and Omer Lutfi Sen(2)

(1) Istanbul Technical University, Aeronautics & Astronautics Faculty, Department of Meteorology
(2) Istanbul Technical University, Eurasia Institute of Earth Sciences

ESF-COST High-Level Research Conference-“Extreme Environmental Events” Selwyn College, Cambridge, UK. 13-17 December 2010
Motivation

- Extreme event studies: Adaptation of climate changes
- Testing Emanuel Scheme for extreme precipitation in late summer
- Impact of SSTs

Total dead: 31 people in Istanbul and cities around (8-9 September 2009).
Motivation

Past SST trend

![Graph showing past SST trend in the Anatolian Peninsula.](image)

Response of precipitation to +2°C warming of SSTs

Future SST trend

![Graph showing future SST trend in the Anatolian Peninsula.](image)

Motivation

Weekly OISTT Anomaly

6-12 September

Daily OISTT Anomaly

6 September

7 September

8 September

9 September
Simulation Design

- **Driving field**: ERA-Interim (1.5x1.5 degree)
- **SST**: OISST weekly, ERSST daily
- **Resolution**: 15 km
- **Domain Size**: 180x120
- **Period**: 01-12 Sep.09

Simulations:
1. Grell-FC with Diurnal Scheme (ERA+OISST)
2. Emanuel with Diurnal Scheme (ERA+OISST)
3. Grell-FC with Diurnal Scheme (ERA+ERSST)
4. Emanuel with Diurnal Scheme (ERA+ERSST)
Results: Total Precipitation (7-9 September)

ERA Interim (Weekly SST)

Emanuel

Grell-FC

Observation

TRMM

Stations
Results: Total Precipitation (7-9 September)
Results: Total Precipitation (8 September 06-12 am)

ERA Interim (Daily SST) Emanuel Scheme
Results: Upper level (8 September 850 mb wind vector & wind speed)
Results: Upper level (850 mb specific moisture)
Results
Discussions and Outlook

• Better results for Emanuel Scheme with high temporal resolution of SST, but what about the sensitivity to domain size:

-> Nested domains?

• Impacts of warmer SST within the context of the climate change:

-> Warmer SST leads to increase in heat flux by enhancing the instability. On the other hand large reductions in precipitation over Eastern Mediterranean are projected (Giorgi and Lionello 2008). Suppressing by the strengthening of the anticyclonic circulation and less large scale precipitation but more severe local precipitation events?
“Thank you”