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Climate models

If we are to make inferences about future climate we cannot
rely on observations. We must use models.
These vary in complexity from simple energy balance models to
large scale AOGCM’s



Climate models/simulators

I Energy Balance Models (EBM)
I Earth Models of Intermediate Complexity (EMIC)
I General Circulation Models (GCM)
I Earth System Models
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Extremes from Climate Models

I Extreme Climates
I Extreme weather within predicted climates



Uncertainty in Climate Modelling

Our models are in general deterministic but uncertainty comes
from a number of sources

I Parameter Uncertainty
I Initial Condition Uncertainty
I Boundary Condition Uncertainty
I Structural Uncertainty



Uncertainty in Forecasting

Lorentz defined two types of forecasting uncertainty
Type 1:

I Uncertainty comes from Initial conditions (Weather
forecasting)

Type 2:
I Uncertainty comes from parameter/ boundary condition

uncertainty (Climate prediction)



Extreme Climates

Climate models give predictions of the expected climate

However because of the uncertainties the model projections
are not inconsistent with other more extreme climates.

To guide policy we would like to know the chance of getting
such extreme (and unpleasant) climates

Could we cross a tipping point?



Monte Carlo Estimate
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Emulators

To enable us to do Monte Carlo (or similar) calculations we
need to be able to run the model many times

But climate models are computationally very expensive

We therefore build emulators - fast approximations to the
climate model (or simulator)



Emulators

I We have a simulator
y = f (x)

I Treat f (.) as an unknown random function and use
Bayesian methods to estimate it

I (Note it is possible to redo all this work in a frequentist way
see book by Santner et al.)



Gaussian Processes

I We model the simulator with a Gaussian Process (GP)
I This has mean

y = f (x) = h(x)Tβ

h(.) is a known vector of regressor (or basis) functions
e.g. h(x)T = (1, x , x2)

I Variance σ2

I And correlation function c(x , x ′) Usually, but not invariably,
we take

c(x , x ′) = exp(−(x − x ′)T C(x − x ′))

C−1 = diag(δ)

I so we have a set of GP parameters (β, σ, δ)



The Prior

If we have prior information on the parameters we can include
this but often we use a non-informative prior

π(β, σ2) ∝ σ−2



The Posterior

η(x) ∼ tn−q

E(η(x)) = h(x)Tβ′ + t(x)T A−1(y − Hβ′)

β′ =
(

HT A−1H
)−1

HT A−1y

H is the matrix {h(x1), · · · ,h(xn)}T
These are the regression terms at x

t(x) = {c(x , x1), · · · , c(x , xn)}

This is the correlation of x with the data, xi
A is the matrix {c(xi , xj)}
This is the correlation matrix of the data with itself
And there are similar, but more complex, expressions for the
variance
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Smoothness

I δ is the smoothness or scale of the GP
I δ is not included in our posterior because it isn’t included in

the Bayesian solution
I Use maximum posterior (likelihood) or cross validation to

estimate δ
I Can use MCMC to include uncertainty on δ in our emulator
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Example
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Design

I We need to design our initial experiment to make the
training set

I We want a design that spans input parameter space
I Popular designs are

I Latin Hypercubes
I Sobol’ Sequences

I Sequential Designs



The Latin hypercube
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Not all Latin hypercubes are equal
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Further Information on Emulators

See

www.mucm.ac.uk

Look under toolkit



An example

The Collapse of the Thermohaline Circulation



The thermohaline circulation

North West Europe is warm compared to similar latitudes



The thermohaline circulation

I This is because heat is transported N in the Atlantic
I This heat comes, not from the Gulf Stream but from the

Thermohaline Circulation
I Cold salty water sinks in the North and flows south at depth
I Warm, fresh water is brought north



What if the thermohaline circulation collapsed today?
Surface air temperature change 20-30 years after THC
shutdown. THC recovers after 120 years (Vellinga and Wood,
2002)



What if the thermohaline circulation collapsed today?
And precipitation



What if the thermohaline circulation collapsed today?

And primary production



The Big Question

I What is the probability that the Meridional Overturning
Circulation in the North Atlantic (MOC) will collapse by
2100?

I What is the probability that the Meridional Overturning
Circulation in the North Atlantic (MOC) in a ensemble of
different models will collapse by 2100?

I What is the probability that the Meridional Overturning
Circulation in the North Atlantic (MOC) in a particular
model will collapse by 2100?
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GENIE-1

I GENIE has about 15 (+2) unknown input parameters

Inputs
Parameters

I Ocean viscosity
I Moisture transport
I Climate Sensitivity ...

Forcings
I Carbon dioxide
I Greenland Melting ...

Outputs

I Ocean/air temperature
I Rainfall
I Salinity
I Heat/moisture fluxes
I Ocean currents
I Max. Atlantic

overturning circulation



The Training Experiment

I To generate the training set we run the model in a
designed experiment

I This ensemble is not designed to give a realistic climate
but to span parameter space

I In our experiments we have one hundred member
ensembles for training

I The design is a maxi-min Latin hypercube



Spin-up of GENIE-1
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GENIE projects the Future
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Calibrating the model

I So far we have not included any data in our analysis
I Only 5 estimates of the strength of the MOC available

(1957, 1981, 1989, 1998, 2004)
I Rejection Sampling
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MOC at 2000 (grey) Vs A1FI (red) Vs B2 (blue)
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Our pdf max MOC through the 21st century
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Probability of the MOC dropping below a threshold of
10 Sv during the 21st century, for three indicative
scenarios.

Scenario Low melt rate High melt rate
A1B 0.09 0.35
A2 0.10 0.33
B1 0.10 0.30



Weather extremes from climate models

I Downscaling
I Dynamic downscaling (regional climate model)
I Statistical downscaling

I Stationarity
I Assume stationarity
I Model stationarity statistically
I Generate a stationary series



Generating a stationary series

I Run the model with fixed forcing for 20-30 years
I Run a ’weather’ generator’

The resulting series can be analysed by standard EV theory
methods



Uncertainty in Extreme Weather

I These estimates don’t have the simulator uncertainty
included

I One way to do this would be to build an emulator
I Can we emulate extremes directly across an ensemble of

climate models?
I It is unrealistic to use GP’s for this as we know that

extremes have very non-Gaussian distributions



Max stable processes

I In a similar way to Gaussian processes we can define max
stable processes whose marginals are the extreme value
distributions

I These are much more complex than Gaussian processes
I Brown-Resnick processes may be suitable for building

extremal emulators

η(t) =
∞∨

i=1

{
Ui + Wi(t)−

σ2(t)
2

}



An Alternative

I The Generalised Extreme Value (GEV) distribution has
three parameters

I Extremes do not have Gaussian distributions
I But the parameters of the GEV can be assumed to do so
I Therefore we can jointly emulate the three parameters
I Since these three jointly define the extremes we have, in

effect, a GP emulator for extremes
I The max stable process defined this way is less adaptable

than the Brown-Resnick process
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