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Outline

Extreme weather and probabilistic prediction

I Atmospheric scales and mesoscale atmospheric dynamics

I Numerical weather prediction

I Forecast uncertainty and ensemble prediction systems

Statistical downscaling of extremes

I Downscaling and post-processing: Extract and calibrate

information

I Verification

Results
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What are extemes?

I Mathematically:

Defined as block maxima or excedances of large thresholds.

Events that lie in the tails of a distribution

I Perseption:

Rare, exceptional, ”large” and high impact

I Problems:

I 95% quantile of daily precipitation: ≈ 10− 15mm/d

I ≈ 2-5 years of data – only few extremes events for verification
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Mesoscale Weather Prediction

I Strong and disastrous impact of many weather extremes calls

for reliable forecasts

I ”Although forecasters have traditionally viewed weather

prediction as deterministic, a cultural change towards

probabilistic forecasting is in progress.” (T N Palmer, 2002)

I Weather extremes do not come ”Out of the Blue”

I Numerical weather forecast models provide reliable forecasts

of the atmospheric circulation prone to generate extremes

I Combination of dynamical and statistical analysis methods
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Atmospheric scales and mesoscale dynamics

I Different scales exhibit different

dominant force balances,

different wave dynamics

I Mesoscale on horizontal scales

2km – 2000km

I Complex force balances

Steinhorst, Promet 35, 2010
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Mesoscale weather extremes

I Heavy thunderstorms on July 14, 2010

I Strong horizontal gradients

I Strong vertical mixing

I Embedded in larger scale squall line –

embedded in synoptic situation
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Connection of Extremes on Different Scales

I Large vertical gradients of

entropy

I Convective instability

I Deep convection lead to

extremal vertical velocities

I Heavy precipitation and

hailstones grow within this

vertical circulation
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Predictability

I Inherent limit of predictability

I Fastes error growth at smallest

scales

I Predictability strongly depends

on flow regime

I Moist convection is primary

source of forecast-error growth

I Mesoscale forecasts are issued

for ≤18h-24h

E N Lorenz, Tellus 21, 19 (1969)
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COSMO-DE Ensemble Prediction System (EPS)

I COSMO-DE: 2.8 km grid spacing,

convection resolving NWP model

I Operational forecasts 0-21 hours –

high-impact weather by DWD

I EPS with 20 (40) members

I Uncertainty due to initial conditions,

boundary conditions, and model

parameterisation errors

I First EPS with convection resolving

limited area NWP model

COSMO-EU

COSMO-DE

GME

      Initial State                Boundary                    Model

S. Theis, DWD (2010)
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Probabilistic forecasting: Maximize sharpness of

the predictive distribution subject to calibration

from Hamill (2006)

Calibration:

Raw ensemble data need adjustmend: biased and underdispersive

Gneiting et al. (2005)
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Statistical downscaling for Extremes

I Global models do not resolve dynamics of many extremes

I More confidence in large scale flow patterns

I Find connection between local extreme and large scale flow

I Climate and weather prediction (early warning)

I Combination of dynamical and statistical analysis methods
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Conditional quantile function

Semi-parametric

I A-priori probability τ , estimate

conditional quantile F−1
Y |X(τ |x) = βT

τ x

via (linear) quantile regression

Parametric

I A-priori assumption about parametric

distribtion FY |X(y |x) = G (y ; Θ(x))

Estimate parameter function Θ(x)

P.Friederichs Extreme weather 12 / 33



Mesoscale Weather Prediction
Statistical downscaling for Extremes

Verification
Results

Censored Quantile Regression
Extrem Value Theory
Non-Stationary Poisson Point Process

Censored quantile regression

QZQR
(τ |X) = max(0,βT

τ X), βT
τ = (β0, . . . , βK )

β̂τ = arg min
βτ

n∑
i=1

ρτ

(
yi −max(0,βT

τ xi )
)

with ρτ (u) = τu for u ≥ 0 and ρτ (u) = (τ − 1)u for u < 0
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Conditional quantile function

Semi-parametric

I A-priori probability τ , estimate

conditional quantile F−1
Y |X(τ |x) = βT

τ x

via (linear) quantile regression

Parametric: Extreme Value Theory

I Parametric distribtion

FY |X(y |x) = G (y ; Θ(x)) is of the

familily of max-stable distributions.
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Extreme value theory ”Going beyond the range of the data”

I Limit theorem for sample maxima

→ asymptotic distribution for extremes

I Condition of max-stability (de Haan, 1984)

→ maxima follow a generalized extreme value

distribution

I Garantees universal behavior of extremes

→ enables extrapolation!

In praxis: often not enough data to reach asymptotic limit
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Extreme value distribution

Generalized extreme value distribution (GEV)

Gξ(y) =

 exp(−(1 + ξ y−µ
σ )−1/ξ)+, ξ 6= 0

exp(− exp(− y−µ
σ )), ξ = 0

,

Gumbel (..., shape=0.0)
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Poisson point process model

For sufficiently large threshold u, Zi > u is Poisson point process

on region [0, 1]× (u,∞) with intensity

Λ(A) = (t2 − t1)

(
1 + ξ

(
z − µ
σ

))−1/ξ

.

for A = [t1, t2]× (u, z)

µ, σ and ξ are parameters of corresponding GEV distribution.
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Non-stationary Poisson point process model

Intensity of Poisson point process depends on multivariate

covariate X

X contains information from model (ensemble) forecast

µ→ µT X σ → σT X ξ → ξT X

The hyperparameter

µT = (µ0, . . . , µK ), σT = (σ0, . . . , σK ), ξT = (ξ0, . . . , ξK ) are

estimated by maximum likelihood method.
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Forecast verification by means of scores

I Cost functions or distance between forecast and data

I Utility measure in a Bayesian context

A score is proper iff

Ey∼Q [S(P, y)] ≥ Ey∼Q [S(Q, y)] ∀ P 6= Q

S(P, y): score function

Q forecasters best guess

Ey∼Q [S(., y)] expectation of S(., y) over y ∼ Q
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Verification: Goodness-of-fit criterion

QVS(τ) = min
{β∈Rq}

∑
i

ρτ (yi−βT xi ) QVSref (τ) = min
{β0∈R}

∑
i

ρτ (yi−β0)

Quantile verification skill score QVSS(τ) = 1− QVS(τ)

QVSref (τ)

Log-likelihood ratio test: asymmetric Laplacian regression

fτ (u) =
τ(1− τ)

σL
exp(−ρτ (u)/σL).

proportional to log(QVS(τ)/QVSref (τ))
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Quantile Estimates

0.000 0.002 0.004 0.006 0.008 0.010

0
5

10
20

30
B

re
m

en

1

2

7

20

54

148

403

1096

  QR 
 PPcs
 PPvs

Winter

P.Friederichs Extreme weather 21 / 33



Mesoscale Weather Prediction
Statistical downscaling for Extremes

Verification
Results

Statistical Downscaling of Extremes
Conclusions and Challenges
Ensemble Post-Processing

Residual quantile plots{(
− log(− log(

i

n + 1
)),− log((1 + ξ(i)

z(i) − µ(i)

σ(i)
)−1/ξ(i))

)
, i = 1, . . . , n

}
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Quantile Verification Score
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Uncertainty of Quantile Estimates
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Elbe Flood
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Conclusions

I Weather forcasts provide information that conditions occurence of

extremes

I Linear (non-linear) statistical modeling extracts information

I Extreme value theory provides distributions tailored for extremes

I Parametric method less uncertain than non-parametric method and

non-linear dependecy (shape parameter) is not parsimony

I High-impact weather: insufficient data available for training and for

validation
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Challenges

I Improve physical understanding of generation processes of extremes

I Application to multi-variable and spatio-temporal predictionswhich

I Combine spatial statistics with model post-processing

(Berrocal et al., 2007)

I Develop methods for multivariate post-processing

I Develop ensemble methods tailored to extremes

I Verification tailored to extremes

I Verification for probabilistic multivariate and spatial forecasts
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Reference

I Friederichs, P., 2010: Statistical downscaling of extreme

precipitation using extreme value theory. Extremes 13, 109-132.
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Susanne Theis, Deutscher Wetterdienst, Offenbach
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Ensemble Post-Processing

I COSMO-DE forecasts 1 July 2008 – 30 April 2010

I 12 h accumulated precipitation between 12 and 00 UTC

First guess probability (fgp) and 0.9-quantile

(fgq9) from 5× 5 neighborhood and 4

COSMO-DE forecasts

lagged average ensemble 
forecast (LAF)

• Umgebung

• 4x9 member

• 4x25 member

• ...

6
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Logistic regression
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Quantile forecasts - reliability
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Quantile forecasts - Scores
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Censoring

Equivariance with respect to non-decreasing function h(·)
Qh(Y )(τ) = h(QY (τ))

Hidden process Y ∗ observed through censored variable Y

Y = h(Y ∗) = max[0,Y ∗]

QY ∗
QR

(τ |X) = βT
τ X
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