Storm surge and wave extremes for present and future. Impact on the insurance losses for the North Sea coastal areas.

Lidia Gaslikova

Helmholtz Zentrum Geesthacht (former GKSS), Germany

Ralf Weisse, Iris Grabemann, Heinz Guenther, Katja Woth, HZG
Christoph Raible, Thomas Stocker, Bern University
Aurel Schwerzmann, Swiss Re
CoastDat downscaling cascade

- Dynamical Downscaling
 - REMO or CLM
 - Simulation with barotropic model of the North Sea

- Empirical Downscaling
 - Tide gauge St. Pauli

Consistent hourly wind, wave and water level datasets
Validation

Extreme Events (wind and waves) from GEV

<table>
<thead>
<tr>
<th>Years</th>
<th>Wind [m/s]</th>
<th>Waves [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CoastDat</td>
<td>Observed</td>
</tr>
<tr>
<td></td>
<td>X_r^{90}</td>
<td>X_r^{90}</td>
</tr>
<tr>
<td></td>
<td>X_r^{90}</td>
<td>X_r^{90}</td>
</tr>
<tr>
<td>K13</td>
<td>2</td>
<td>24.38</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>25.86</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>28.44</td>
</tr>
<tr>
<td>EUR</td>
<td>2</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>23.76</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25.67</td>
</tr>
<tr>
<td>SON</td>
<td>2</td>
<td>23.29</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>24.89</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>26.68</td>
</tr>
</tbody>
</table>

2, 5, and 25-year return values with 90% confidence limits based on 10,000 Monte Carlo simulations each.

(Weisse and Günther 2007)
Applications: Long-term changes

Annual mean winter high waters at Cuxhaven (German Bight)

red – modelled data, black – observations

(Weisse and Plüß 2006)
Applications: Climate change signal

Change of annual 99.5% storm surge (2071-2100 to 1961-1990)

(Woth 2005, Woth et al. 2005)
Applications: Climate change signal

Annual 99%-ile Significant Wave height
Climate Change Signals [m]
2071-2100 relative to 1961-1990

(Grabemann and Weisse, 2008)
Applications: Offshore wind

Wind and sea state statistics

- Wind power availability (wind speed and direction)
- Design of structures (joint wind and wave extremes)
- Planning of installation / maintenance (weather windows)
Applications: Safety of navigation

Background:
EU safety regulations for RoRo passenger vessels

Criteria:
- Sig. wave height of 1.5, 2.5, 4.0 m exceeded in less than 10% of time (according to ship specifications)
- Distance to next harbor

(Source: BSH)
Applications: Re-insurance for coastal areas

- Risk of coastal flooding due to storm surges. Possible loss changes for future climate.
- Large area (5 countries)
- Dependent time-series
- Need for realistic spatial patterns and separate events rather than spatial distribution of extremes
- Not enough high water events in the existing datasets

Strom surge events and total maxima for each location
Applications: Re-insurance for coastal areas

probabilistic event set
1) identify events from the original hourly dataset
2) fit the distribution (Gaussian)
3) generate artificial events

parameters:

\(t_{\text{win}} \) – length of time window (120h)
\(\text{th}(i) \) – threshold (ann. 99.99%)
\(\text{exc} \) – necessary number of exceedances to consider time-window as event (10)
Applications: Re-insurance for coastal areas

Differences between annual expected losses from scenarios and present day conditions

UK

Belgium

Netherlands

Germany

Denmark

All countries

Scen/Cti in %

Scen, Scen+0.5m, Scen+1m

Ct, B2, A2
Thank you for your attention

References:

