Extreme Value Analysis of Kansas Temperature Data

Chunsheng Ma

Department of Mathematics and Statistics, Wichita State University, Kansas, USA

This work is supported in part by the US Department of Energy under Grant DE-SC0005359,
in part by the Kansas NSF EPSCoR under Grant EPS 0903806
and in part by a Kansas technology Enterprise Corporation grant on
Understanding Climate Change in the Great Plains: Source, Impact, and Mitigation.
Outline

• Kansas weather stations and data source

• Project

• A strategic plan of stochastic and statistical modeling

• Exploratory data analysis
1. Kansas weather stations and data source

Weather data source

- National Oceanic and Atmospheric Administration (NOAA) http://www.noaa.gov/

 National Weather Service http://www.nws.noaa.gov/

 National Climatic Data Center (NCDC) http://www.ncdc.noaa.gov oa/ncdc.html

- High Plains Regional Climate Center (HPRCC) at University of Nebraska at Lincoln http://www.hprcc.unl.edu/
Kansas weather stations

Figure 2: Kansas weather stations
2. Project

Understanding Climate Change in the Great Plains: Source, Impact, and Mitigation (2009-2014)

PI: Charles Rice, Department of Agronomy, Kansas State University

Co-PIs:

Johannes Feddema, Department of Geography, University of Kansas

John A. Harrington, Department of Geography, Kansas State University

Chunsheng Ma, Department of Mathematics and Statistics, Wichita State University
3. **A strategic plan of stochastic and statistical modeling**

(i) Time series analysis of historical data at each station (Purely temporal)

(ii) Spatial statistical modeling at the fixed time (Purely spatial)

(iii) (Univariate) Spatio-temporal data analysis

(iv) (Multivariate, or vector) Spatio-temporal data analysis

 Weather data: Temperature, wind speed, wind direction, precipitation ...

 Related data: Agricultural, environment, public health ...

(v) Extreme weather events
4. Exploratory data analysis

Figure 3: Original Data: Dodge City daily low temperature between Jan. 1 and March 31
Figure 4: Original Data: Dodge City daily high temperature between June 1 and Aug. 31
Figure 5: Original Data: Dodge City daily high temperature between June 1 and August 31 with smoothing parameter 0.00081282
Dodge June 1 - August 31 Probability Day is Hottest of the Year

![Graph showing probability distribution for the hottest day of the year from June 1 to August 31. The graph compares two periods: 1973-1999 and 2000-2009.](image-url)
Figure 7: Original Data: Dodge City daily high temperature between June 1 and Aug. 31

Doved June 1 - August 31 Probability Day is Hottest of the Year
Figure 8: Original Data: Hays daily high temperature between June 1 and Aug. 31
Figure 9: Original Data: Hays daily low temperature between Jan. 1 and March 31
Figure 10: Original Data: Manhattan daily high temperature between June 1 and Aug. 31
Figure 11: Original Data: Manhattan daily low temperature between Jan. 1 and March 31
Figure 12: Original Data: Topeka daily high temperature between June 1 and Aug 31
Figure 13: Original Data: Topeka daily low temperature between Jan. 1 and March 31
Figure 14: Original Data: Wichita daily low temperature between Jan. 1 and March 31
Figure 15: Original Data: Wichita daily high temperature between June 1 and Aug. 31