Applying Multivariate Extreme Value Theory to
Environmental Data

Philippe Naveau naveau@lsce.ipsl.fr

Laboratoire des Sciences du Climat et 'Environnement (LSCE)
Gif-sur-Yvette, France
joint work with Dan Cooley and Richard Davis

FP7-ACQWA, GIS-PEPER, MIRACLE & ANR-McSim, MOPERA

13 décembre 2010



m "We anticipated as far as possible
but one cannot forecast the
unforeseeable”
Xynthia’s storm in France, 25 Feb 2010

m “[tis impossible that the
improbable never occurs”
Emil Julius Gumbel (1891-1966)




Oscar Wilde perspective

“Man can believe the impossible, but man can never believe the
improbable” Oscar Wilde (Intentions, 1891)

Extreme events ? ... a probabilistic v
concept linked to the tail behavior : :
low frequency of occurrence, large .
uncertainty and sometimes strong .
amplitude.
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An example

Air pollutants (Leeds, UK, winter 94-98, daily max) NO vs. PM10 (left), SO2 vs. PM10
(center), and SO2 vs. NO (right) (Heffernan& Tawn 2004, Boldi & Davison, 2007)
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Typical question
What is the probability of observing data in the blue box ?



A few facts about Extreme Value Theory

APPHCFI statistics

m An asymptotic probabilistic
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Historical perspective

Gumbel (1891-1966) Weibull (1887-1979) Fréchet (1878-1973)

m Emil Gumbel was born and trained as a statistician in Germany, forced to move to
France and then the U.S. because of his pacifist and socialist views. He was a
pioneer in the application of extreme value theory, particularly to climate and
hydrology.

m Waloddi Weibull was a Swedish engineer famous for his pioneering work on
reliability, providing a statistical treatment of fatigue, strength, and lifetime.

m Maurice Frechet was a French mathematician who made major contributions to
pure mathematics as well as probability and statistics. He also collected empirical
examples of heavy-tailed distributions.

Other important names : Fisher and Tippet (1928), Gnedenko (1943), etc



Max-stability

Let M, = max(Xi, ..., Xp) with X; iid with distribution F.

Definition : F max-stable if

P (@ < x) = F"(anX + bn) = F(x)

Examples
Unit-Frechet F(x) = exp(—1/x) for x > 0. Then a, = n& b, =0

Gumbel F(x) = exp(— exp(—x)) for all real x. Then a, =1 & b, =logn

Weibull F(x) = exp(—(—x)*) for x < 0 (1 otherwise). Then a, = n~"/°,

bn:o



Basics

Maxima Distribution

Gumbel

Weibull

Fréchet




Generalized Extreme Value (GEV) distribution

]P’(Mnb—n an <x> ~ GEV(x) :exp{_ [1 +§<%)I1/£}
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From Bounded to Heavy tails




Intro summary

Modeling maxima : GEV
Stability for the max operator and Xo, X, ... X, idd GEV

a max(Xi,...,Xn) +b=X

Note : Modeling excedances via Generalized Pareto Distribution

If exceedances (R — u|R > u) follows a GPD(oy, €) then higher exceedances
(R = v|R > v) also follows GPD(cy + (v — u)¢, €)



A few studies linking EVT with geophysical extremes

Special issue of the journal Extremes, 2010

m Casson and Coles (1999) a Bayesian hierarchical model for wind speeds

exceedances
Stephenson and Tawn (2005) Bayesian modeling of sea-level and

rainfall extremes
Cooley et al. (2007) a Bayesian hierarchical GPD model that pooled

precipitation data from different locations
Chavez and Davison (2005) GAM for extreme temperatures (NAO)

Wang et al. (2004) Wave heights with covariates

Turkman et al. (2007), Spatial extremes of wildfire sizes

Biodiversity and extreme temperatures, Sang and Gelfand, 2009
Lichenometry, Jomelli et al., 2007

Hydrology Katz et al.

Downscaling Vrac M., Kallache M., Rust H., Friedrichs P., etc
GCMs and RCMS analysis Smith R., Zwiers F., Maraun D., etc




Limits of the univariate approach

Independence or conditional independence assumptions

Observed BHM with Cl assumption
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Ribatet, Cooley and Davison (2010)



Why is Multivariate EVT needed ?
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How to perform
spatial interpolation of
extreme events ?
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Why is Multivariate EVT needed ?

m Compute confidence intervals
m Calculating probabilities of joint extreme events






A few geophysical applications of Multivariate EVT

m Sea surges & river flows (Gumbel conditional regression)
Tawn et al., 2004

m Measuring the spatial dependence among rainfall maxima in Bourgogne
(Max-stable processes) :
Naveau & et al., (2009, Biometrika)

m Modeling multivariate dependence among pollutants (spectral EVT
measures) :
Cooley, Davis and Naveau (2009, JMVA)

m Spatial extremes, Bel, Bacro, Lantujenoul (2010)
m Extreme snow, Blanchet et al., 2010



Max-stable

Mutivariate extremes

A few Approaches for modeling multivariate extremes

m Max-stable processes : Adapting asymptotic results for multivariate
extremes
Schlather & Tawn (2003), de Haan & Pereira (2005)

m Complete modeling : Auto-Regressive spatio-temporal heavy tailed
processes, Davis and Mikosch (2007), AR-Gumbel Toulemonde et al.
(2009)

m Copula approach : uniform marginals with extreme copulas,
Genest et al., Charpentier

m Ribatet et al. (2010), Spatial R package for extremes
m Pseudo-likelihood inference Padoan, Ribatet and Sisson



Max-stable

Main question

How to model dependencies among maxima ?




Max-stable

Choice of marginals : unit-Fréchet

F(x) =exp(—1/x),forx >0

Fréchet (1878-1973)



Max-stable

Max-stable processes

Max-stability in the univariate case with an unit-Fréchet margin

F'(tx) = F(x), for F(x) = exp(—1/x)



Max-stable

Max-stable processes

Max-stability in the univariate case with an unit-Fréchet margin

F'(tx) = F(x), for F(x) = exp(—1/x)

Max-stability in the multivariate case with unit-Fréchet margins

F'(tu, tv) = F(u,v)



Max-stable

A central question

F(u,v) =?? such that F'(tu, tv) = F(u, v)




Max-stable

A central question F(u,v) = F'(tu, tv)

Suppose that F(u, v) = exp(—V(u, v)) and let (X, Y;) iid with distribution
F(uyv)yandi=1,... t

Link with counting processes

P(max X; < tu,max Y; < tv)

PVi=1,...,tXi<tuY; < tv),
F'(tu, tv),
F(u,v),
= P(Number of points in [u, c0) x [v,o0)] = 0),
(V(u, v))° exp(—V(u, v))
0!




Max-stable

A central question F(u, v) = F'(tu, tv)

Suppose that F(u, v) = exp(—V(u, v)) and let (X, Y;) iid with distribution
F(uyv)yandi=1,... t

Link with counting processes

P(max X; < tu,max Y; < tv)

PVi=1,...,tXi<tuY; < tv),
F'(tu, tv),
F(u,v),
= P(Number of points in [u, c0) x [v,o0)] = 0),
(V(u, v))° exp(—V(u, v))
0!

Interpretation of V(u, v)
It can be viewed as the integrated Poisson intensity of the limit of

Ne(u, v) = i I(Xi, Yi) & [0, tu) x [0, tv)]
i=1



Max-stable

A central question F(u, v) = F'(tu, tv)

Equivalence between F and V
F(u,v) = F'(tu, tv) is equivalent to V(u, v) = tV(tu, tv)

Pseudo-polar coordinates
The special case r = (U + v) and wy = ¥, w2 = ¥ (pseudo-polar coordinates)
gives

F(u,v) =exp (-1; V(w1,w2))

The Poisson intensity can be viewed as a product of two independent
components : a radius (strength) and an angular (direction)



Max-stable

Polar coordinates

2D 3D
r=(u+v)and r_(uu+v+|</v), w
wi=fwp =7 Wi =W =, ws =




Max-stable

2D Polar coordinates

2D : INDEPENDENT CASE 2D : COMPLETE DEPENDENCE
r=(u+v)and r=(u+v)and
wy = %,WQ =1L v

= U =V
T w1 = §,w2 =7




Spectral

Examples : fitting multivariate maxima

Air pollutants (Leeds, UK, winter 94-98, daily max) NO vs. PM10 (left), SO2 vs. PM10
(center), and SO2 vs. NO (right) (Heffernan& Tawn 2004, Boldi & Davison, 2007)
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Our strategy
Assume observations arise from a max-stable process
A Find and fit a flexible parametric model for the spectral density

H Two desiderata : (A) interpretable parameters & (B) going beyond the
bivariate case



Spectral

Multivariate Max-Stable Distributions (de Haan, Resnick)

If Z = (Z(x1),...,Z(xp))" has a multivariate max-stable distribution with unit
Fréchet margins (P(Z(X;) < z) = exp(—z~1)) then :

G(z) = P(Z < z) = exp[—V(2)], where

V(z) = p/s,, max (%’) dH(w),

H is a positive measure on Sp, s.t.
| wakw) = 1/p.
Sp

and S, ={weR|wi +...+w, =1}



Spectral

Models for Multivariate MSD’s

Exponent measure function Spectral density
V(2) h(w)

m Logistic m Dirichlet
m Asymmetric Logistic (Coles & Tawn, 91)
(Tawn, 88) m Dirichlet mixture
= Negative Logistic (Boldi & Davison, 2006)
(Joe, 90) m Pairwise Beta (Cooley, Davis
and Naveau)

+ Can obtain G(z) + More flexibility ?
— Overparametrized ?
— Less flexible ? — Cannot directly get G(2)



Spectral

Dirichlet model (Coles, Tawn, 1991) [, widH(w) =1/p

1 P miw MW,
-0) = = Cap)— (1) . h* 11 PYp
h(w; 0) p(m w) 7-”1 m;h ( —— ,9)

A special case : Dirichlet model




Spectral

Our Pairwise Beta Model

ho(w; a,8) = Kp(a)Zhiyj(vw,m;a,,B[,j),Where
i#
hij(wi, wis o, Big) = (w4 w) P — (wi o wy)) T x
I'(26i)) ( w; )H""‘_1 ( w; )Bf"_1
(F(Bi))? \ Wi+ w; Wi + W
Advantages :

®m no adjustment necessary to get center of mass condition
J wiaH(w) = 1/p

m parameters have some interpretation : o controls overall dependence,
Bij’'s control pairwise dependence

m largely specified by pairwise parameters

m Middle ground between Coles & Tawn (1991) and Boldi & Davison (2007)



Spectral

Pairwise Beta Models

a=1,8=(2,4,15) a=4,8=(2,4,15)

a=1,8=(2,.5,.5) a=1,8=(2,2,.5)



Spectral

Fitting the spectral density model

Beirlant at al., (2004), Coles & Tawn (2004), Boldi & Davison (2007)

(a) have common marginals with unit tail index
(b) transform into polar coordinates and select exceedances above t,
(c) maximize the likelihood

Ny, Neg
L(6; (rsy, wey),i = 1,0, Nip) = exp(— Hdu ;W) = exp( 1‘0 Hr




Spectral

Air pollutants example

a B2 Bis Bia Bis P23 B2.4 Bas 3.4 B35 Bas
PM10, NO PM10, NO2 PM10, O3 PM10, SO2 NO, NO2 NO, 03 NO, SO2 NO2, O3 NO2, SO2 03, S02

0.31 4.04 29.69 0.33 0.81 3.51 0.34 0.53 0.61 0.45 0.33
(0.002) ] (0.139)| (1.222)  (0.006) | (0.026) | (0.119) (0.006) [(0.014)] (0.013) (0.011) (0.006)

E : 8 8
84 ER ®o o @




Spectral

Air pollutants example

data Beta model Dirichlet model

100 largest observations.
corners= PM10 (lower right), NO (upper left), SO2 (lower left)



Prediction : Approximating the conditional density ?

o, Z1Z2) (Z0%, 21,73
%

padl ]

Zl

If V(z) is known and differentiable, then joint density can be obtained exactly.
However, we are modeling h(w). Assume Z;, Z; are observed and Z; is
unobserved. Any predictor Z; will yield a point Z* = (Z;, Z1, Z2) which can

be mapped back to S, as sz—“
1



Approximating the conditional density ?

If V(z) = u{(0, 2]} is small (i.e. the radius is large), then
G(z) =exp(—V(z)) = 1 - V(2).

Using Coles and Tawn (91) result to estimate the density at z :

0 1 z
9B~ gz oz VO e (W)

So conditional density can be approximated by

1 V4
HZH’(P*”h(HZH)

[e'S] V4
fO HZ*HL(PM)h (HZ*H) dC

92012,,..2,_1(2Zp| 21, ..., Zp—1) =

where z* = (z,...,2-1,().



Prediction

Approximating the conditional density ?

Three realizations from a trivariate symmetric logistic distribution.
True conditional density (solid line) and approximated conditional density (dotted line)
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Conclusion

Summary of our spectral approach

m “Simple” and flexible spectral density with interpretable parameters
m Can be used for prediction or interpolation purposes

m Can be generalized (Ballani, Schlather, 2010)
m Can be extended to the asymptotic independent case (Qin, Smith, Ren,

2008)



Conclusion

Take home messages

m Multivariate EVT may help characterizing extremes dependencies in
space and time

Physical knowledge should be integrated into the statistical analysis
Computational issues can be arisen quickly

Modeling trade off between parametric and non-parametric approaches
Asymptotic independence can be an issue

Extremes here means very rare

Two advertisements
m Extreme Value Analysis (EVA, Lyon June 27th to July 1st, 2011)

m Environmental Risk and Extreme Events, Workshop, Ascona, July 10-15
2011



An example with o =1, 8 =

(2,4,15)

02

\

Conclusion




Conclusion

An example with « =1, 3 = (2,4, 15) (... = asymptotic mle) 200 real * 1000
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Conclusion

A main random variable of interest : precipitation

Relevant parameter in meteorology and climatology

A Highly stochastic nature compared to other meteorological parameters
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Conclusion

Estimating the GPD parameters estimates (5, ¢)

m Maximum likelihood estimation

m Methods of moments type (PWM and GPWM, Ribereau et al., 2010)
m Exhaustive tail-index approaches

m MCMC techniques

Taking advantages of the stability property

m Mean Excess function

ou+ Ug
1-¢

m the scale parameter varies linearly in the threshold u

E(R—ulR>u)=

m the shape parameter ¢ is fixed wrt the threshold u
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