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Reasons of non-stationarity
of flood events

Changes in land use and land cover, drainage works

River regulation and flood control reservoirs

Global and local climate change or variability



Direct causes of disastrous floods

Flow discharge exceeds the full bank capacity and water is 
spilling over crown of levees;
The flood wave  breaks embankment. Prolonged high water 
levels are softening  the river levees finally causing rapidly 
growing breach. Obviously the exact location of the washout  
can be hardly predicted but from the observation of past floods 
one  learns that it usually takes place after the flood culmination, 
i.e. on the falling limb of flood hydrograph. Therefore the break 
of flood banks does not decrease the magnitude of peak flow 
discharge.
Blockage of a river channel by ice jams, sand bar in the river 
mouth, dumped trees and bushes. (Beyond formal statistical 
analysis).



Random variables modelled in FFA

One dimensional random variable: 

(i)   Annual peak flow 
(ii) Annual maximum mean discharge over 

a period of duration d (Javelle, 2001)
(iii) Annual maximum flow discharge  

continuously exceeded during the 
period d (Bogdanowicz et al. 2008)  

(iv) Annual maximum (uninterrupted) duration 
[D (hours)] of flows over the flood alarm
threshold 

( )dQ
( )maxQ

( )dQ

( )Aq



Random variables modeled in FFA

Water resource management, design of hydraulic 
structures such as bridges, spillways of dams, 
embankments, roads and railways, land use 
management and flood control depend on reliable 
estimates of annual maximum (AM) flows with 
various probability of exceedance  

They  entail estimation of the upper tail of a 
probability density function (PDF) of annual maximal 
flows
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Random variables modeled in FFA

Annual peak flow  estimate is obtained either

(a) directly from the annual maximum instantaneous
or mean daily streamflow series

(b) from partial duration series

or
(c) from seasonal approach 

e.g. TCEV1
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Random variables modeled in FFA
(i) Annual peak flow ( )maxQ (3 of 3)



Random variables modeled in FFA
(1 of 2)

(ii)  Annual maximum mean discharge over 

a period of duration d (Javelle, 2001) 

( )dQ



Random variables modeled in FFA

The duration in ‘discharge–duration–frequency’ model ( model) 
is considered as  a fixed parameter. The product  can be used 
to determine the volume necessary to reduce the peak to required
magnitude

To avoid inconsistency of the estimates of quantile  
for various d, the same distribution function is applied for all 
duration (Javelle et al., 1999) and the quantile are reduced by 
decreasing function of d, i.e. 

where the parameters v are estimated from the data. It means that 
the distributions for various d values differ in the mean only.  Note 
that  corresponds to the  distribution of annual instantaneous 
peak discharges.
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Random variables modeled in FFA
(iii)  Annual maximum flow discharge  continuously exceeded 
during the period d      (Bogdanowicz et al. 2008)

( )dQ
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Random variables modeled in FFA

dQ dF

(2 of 2)(iii)

Similarly to the ‘mean discharge–duration–frequency’ model
(           model), the duration  is in the             analysis considered
ans considered as  a  fixed parameter. Taking various d
duration in the                 model provides continuous 
description of flood hydrograph as a function of flow duration 

QdF dQ dF



Random variables modeled in FFA (1 of 3)

(iv) Annual maximum (uninterrupted) duration [D (hours)] 
of flows over the flood alarm threshold  is considered 
as the measure of the risk of flood spilling out of river channel.
The flow discharge is a fixed parameter.

( )Aq



Random variables modeled in FFA

The DqF model
The frequency analysis of the data containing several zero values, 
while zero is the lower limit of the variability, requires using
discontinuous PDF

where  denotes probability of zero event,   is the conditional 
probability density function (CPDF), i.e. , which is 
continuous in the range with a lower bound of zero value, 
and  is the vector of parameters while  is a unit step function.
Note that the estimate of  can be taken from AM cumulative 
distribution function (CDF): 
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Random variables modeled in FFA

Alternatively, from the likelihood function 

where n1 and n2 denote the number of zeros and 

non-zeros values, respectively, one gets
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The DqF model
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Uncertainty of upper quantile estimates

Power of model discrimination procedures.

The discrimination procedures often favor some functions as shown 
below for (IG,LN) pair. 

Probability of correct selection for the LR procedure got by sampling 
experiment:

(1 of 3)

Sampling error and model error both depend on the parameter 
estimation technique.



Uncertainty of upper quantile estimates
Inverse Gaussian (IG) vs. Lognormal (LN) models – parameters 
estimated by MLM

Legend: N – sample size, CV – variation coefficient

(2 of 3)



Uncertainty of upper quantile estimates

Asymptotic bias of quantile estimates caused by model 
misspecification

Asymptotic relative model error of quantiles 
if (True=Log logistic, False=Log Gumbel)

(3 of 3)



Time trend build in  estimates of PDF 
parameters

Regardless of the reasons of flood regime changes, when dealing with
hydrological non-stationarity in flood frequency modelling and 
hydrological design, it is necessary to account for trends in upper 
quantile estimates. 

Assuming a distribution function to be time-invariant, the trends 
in quantiles result from time-variability of distribution parameters:

Why the heteroscedasticity option is of interest ?

Denote  
For upper quantile  one gets ,
e.g. for   R equals 2.33 and 3.14 for the normal and Gumbel 
distributions, respectively
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Time trend build in  estimates of PDF 
parameters
Identification of distribution and trend software package

Model = type of PDF + class and form of time trend in distribution 
parameters.

Set of alternative distributions:
(2000):

2-parameters: N, Ga(2), Gu, LN(2),
3-parameters: Pe(3), LN(3)

(2007 supplement):
2-parameters: LG, LL, We(2), CD(2), IGa(2)
3-parameters: GEV, GLL, We(3), CD(3), IPe(3).

(2 of 4)



Time trend build in  estimates of PDF 
parameters

Classes of trend:

A: in the mean value;

B: in the standard deviation; 

C: both in the mean and the standard deviation related 

by a constant value of the variation coefficient (CV);

D: unrelated trend in the mean value and the standard 

deviation
Forms of trend:

(2000) Linear and square trinomial (parabolic);
(2007) Linear only. 

(3 of 4)

Identification of distribution and trend software package



Time trend build in  estimates of PDF 
parameters

Identification of distribution and trend software package

ML estimation of covariate-dependent PDF parameters.
Model discrimination by the Akaike information criterion
Standard error of time-dependent quantile produced by
- Fisher information matrix (2000)
- “Resampling” (Katz et al. 2002).
Hydrologic design

Denoting service life as years and the beginning 
of operation in  year, the probability of exceedance 
of peak discharge during this period is

For given probability of exceedance one can find by iterative
technique the design flow discharge .
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Implementation of NFFA results

The deficiency of the ML estimation in the presence of covariates 
results from the fact that various models may show similar fit to the 
time-series while time dependent estimates of moments and upper 
quantiles strongly depend on the model.
Moreover, the L-ratio (hence AIC) discrimination procedure favours 
some distributions and its capacity is low for hydrological series.
Computational difficulty of the ML method depends on a model and it 
increases fast with the number of  parameters to be estimated. 
All these  tend to incline towards an estimation of time-dependent 
moments by distribution-free techniques.
While some authors consider the GEV distribution option only, 
we suggest stationarisation of time series by WLS method 
(Strupczewski and Kaczmarek, 1998, 2001) and then selection 
of a proper distribution function using the L-moment technique 
for parameter estimation

(1 of 3)



Implementation of NFFA results

Hydrologic design under non-stationary conditions is a direct 
consequence of accepting the idea of environmental changes.
It requires a two-dimensional extrapolation of usually short time 
series, namely, in probability and in time, to cover the design life 
of a flood control structure, which can be over 100 years in the
case of a major structure.
Is the statistical prediction for such a long period reliable ??
Prevailing tendency of Polish river flood regime (1920-2005) is 
a decreasing trend in both the mean and standard deviation 
while keeping CV fairly constant.
Making allowance for non-stationarity brings in this case 
decrease of water structure dimensions.

(2 of 3)



Implementation of NFFA results

If time-series of summer and winter peak flows exhibit different 
nonstationary properties, such analysis should be based on the 
Seasonal Maxima approach.
It is easy to accept the idea of the impact of environmental 
changes on flood regime but   its implementation is still in the 
stage of infancy.
A physical explanation of the observed trend can make the 
prediction more meaningful

(3 of 3)
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