
ESF-EMS-ERCOM CONFERENCE:

PERSPECTIVES IN DISCRETE MATHEMATICS

PROBLEM SESSION

1.

Problem 1 (proposed by Boris Bukh). Let G and H be graphs. The tensor product of G and H, which

is written as G⊗H, is the graph whose vertices are V (G)× V (H); (u, v) and (u′, v′) form a non–edge of

G⊗H if either uu′ is a non-edge of G or vv′ is a non-edge of H. If α(G) is the independence number of

G, it is clear that α(G⊗H) ≥ α(G)α(H). Lovász [9] showed that

α(C⊗n5 ) ≤
(√

5
)n

.

This bound is tight since α(C5 ⊗ C5) = 5. In particular

lim sup
n→∞

α(C⊗n5 )(√
5
)n = 1 .

Question 1.1. What is the value of

` = lim
n→∞

α(C⊗2n+1
5 )

5n
.

The limit does exist since α(C⊗2n+1
5 ) ≥ α(C2

5 )α(C2n−1
5 ). One can check that α(C5 ⊗ C5 ⊗ C5) = 10.

This gives that 2 ≤ ` ≤
√

5.

2.

Problem 2 ( proposed by Jacob Fox). Let G = (V,E) be a graph. The density of a set S ⊆ V (namely,
e(S)
|S|2 ) is denoted by d(S). A set S ⊂ V is called a ε-quasirandom set if and only if for all U ⊂ S such that

|U | ≥ ε|S| the following inequality holds:

|d(U)− d(S)| < ε.

This notion is the same as saying that U is ε-regular within itself. The following lemma is due to Conlon

and Fox [4, Lemma 5.2],

Lemma 1. For all ε > 0, there exists δ = δ(ε) such that every graph G contains a ε-quasirandom subset

with |S| ≥ δ|V |.

In particular, the following bounds on δ(ε) are known,

2ε
−Ω(1)

≤ 1

δ(ε)
≤ 22

ε−O(1)

.

Question 2.1. Improve either the upper or the lower bound on δ(ε).

The problems collected in this list were presented at the Problem Session of the ESF-EMS-ERCOM Conference Per-

spectives in Discrete Mathematics held in the Centre de Recerca Matemàtica, Barcelona, 24-29 June 2012. The organizers

wish to thank Guillem Perarnau, Juanjo Rué and Llúıs Vena for preparing the written version of the session.
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Another related question is whether this result can be extended to the hypergraph framework. With

this purpose, one needs to define carefully the notion of ε-quasirandomnes for hypergraphs.

3.

Problem 3 (proposed by László Lovász/ Kamal Jain). Let d be a positive integer. Given an orientation

of a graph, a d-vector flow in G is a set of |E(G)| vectors ve ∈ Rd such that for any vertex v ∈ V (G),∑
e=−→uv

ve =
∑
e=−→vu

ve .

A d unit vector flow is a d-vector flow such that ||ve||2 = 1 for all e ∈ E(G).

Conjecture 3.1. Every 2-edge connected graph has a d = 3 unit vector flow.

This can be strengthen if we assume that the connectivity is larger.

Conjecture 3.2. Every 4-edge connected graph has a d = 2 unit vector flow.

If true these conjectures are best possible. Indeed, if there is a cut edge, it is not possible to have a

flow. Moreover, a complete graph on 4 vertices does not have a d = 2 unit vector flow.

The conjectures are also known to be true for planar graphs, using the Four Color Theorem. Regarding

general graphs Jain proved ten years ago that any 2-edge connected graph has a d = 7 unit vector flow

(not published). Moreover, Thomassen proved that any 8-edge connected graph has a d = 2 unit vector

flow.

One important remark is that it is enough to prove the conjecture for 3-regular graphs.

4.

Problem 4 (proposed by Michal Lason). Consider k-colored d-dimensional continuous necklace, that is,

a cube in Rd divided into k Lebesgue measurable sets. We want to split the necklace between two thieves

using t axis aligned hyperplane cuts, in order that both thieves get the same measure of each color. If

t ≥ k it is possible to do it (Goldberg and West [6], Alon and West [2]) while if t < k there are some bad

configurations. Moreover, if t = k, for any composition t = t1 + · · ·+ td (ti ≥ 0) we can split the necklace

in a fair way with ti hyperplanes aligned with respect to the i-th coordinate.

One may ask if for any k-coloring of Rd (partition of R into k measurable sets) there exists a necklace

with a fair 2-splitting using at most t axis aligned hyperplane cuts. If t ≥ k the answer is positive, while

if t < k − d− 1 it is negative.

Conjecture 4.1. For any k > 0, t > 0 such that t = k − d − 1 and any measurable k-coloring of Rd

exists a necklace with a fair 2-splitting using at most t axis aligned hyperplane cuts.

5.

Problem 5 (proposed by Balázs Szegedy). Let d ∈ N be fixed. A random d-regular graph is a graph

chosen uniformly at random from the set of d-regular graphs on n vertices.

Question 5.1. Do random d-regular graphs have the poorest structure among large girth d-regular

graphs?
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Since d does not depend on n the number of short cycles is small and thus, it is known that G, locally,

looks like a tree. This is also the case for d-regular graphs with large girth.

Conjecture 5.1. For every ε > 0 and k, r ∈ N, there exists n such that if G1 is a random d-regular

graph of size at least n and G2 is a d-regular graph of girth at least n, then with probability 1 − ε, any

coloring f : V (G1) −→ [k] can be modeled with an ε-precision on V (G2) such that the local statistics in

balls of radius r are ε-similar.

That is, up to ε, they have the same statistics of colored trees of radius r and so on.

Other questions arise:

Question 5.2. Can we say the same for d-regular expanders or pseudorandom graphs?

Question 5.3. What if we replace them by Ramanujan graphs?

6.

Problem 6. (proposed by Peter Allen). A tight path P
(k)
` is a k-uniform hypergraph with vertex set

{v1, . . . , v`} such that {vi, vi+1, . . . , vi+k−1} is a hyperedge for each 1 ≤ i ≤ ` − k + 1. The problem

is to determine the Turán number for P
(k)
` , namely the maximum number of edges that an n–vertex

hypergraph can contain without having a copy of P
(k)
` .

A construction of Győri, Katona and Lemons [7] is the following. Find(
1− o(1)

)( n
k−1
)(

`−1
k−1
)

sets of size ` − 1 in [n], no two sharing k − 1 or more vertices. The hypergraph consisting of k-uniform

cliques on these sets does not contain P
(k)
` and has(

1− o(1)
)(`− 1

k

)( n
k−1
)(

`−1
k−1
) =

(
1− o(1)

) l − k
n− k + 1

(
n

k

)
≈
(
1− o(1)

) `
n

(
n

k

)
edges.

This construction is possible for all fixed ` due to Rödl’s celebrated solution of the Erdős-Hanani

problem. Using this Győri, Katona and Lemons showed that for any constant `,(
1 + o(1)

)`− k − 2

k

(
n

k − 1

)
≤ ex

(
n, P

(k)
`

)
≤ (`− k − 2)

(
n

k − 1

)
.

It would be interesting to obtain a sharp result for constant `. We conjecture that the lower bound is

optimal.

For ` growing as a function of n, much less is known. The construction of Győri, Katona and Lemons

can exist up to ` ≈
√
n, but for k ≥ 3 it cannot exist for larger `. As an example in the positive direction,

for k = 3, we can take as vertex set the points of F2
q, and the lines in F2

q form the desired collection of

sets. The negative direction is easy to check.

For k = 2 the well-known Erdős-Gallai Theorem [5] shows that

ex
(
n, P

(2)
`

)
.
`

n

(
n

2

)
.
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Allen, Böttcher, Cooley and Mycroft have obtained the upper bound for general k

ex
(
n, P

(k)
`

)
≤ `

n

(
n

k

)
+ o(nk)

which, while matching the form of the lower bound above and of the Erdős-Gallai Theorem, is only

nontrivial when ` grows as a linear function of n. In this range of ` we know that the construction above

cannot exist. The best construction we know is the hypergraph on [n] consisting of all edges with at least

one vertex in
[
`
k − 1

]
: so we have(

n

k

)
−
(
n− `

k + 1

k

)
≤ ex

(
n, P

(k)
`

)
≤ `

n

(
n

k

)
+ o(nk) .

It is possible that the lower bound is optimal for ` = Θ(n). The upper bound is not optimal.

Question 6.1. What is ex
(
n, P

(k)
`

)
?

7.

Problem 7 (proposed by Bartosz Walczak). We say that a, b ∈ Zw are k-crossing if there exist i, j ∈
{1, . . . , w} such that a[i] − b[i] ≥ k and b[j] − a[j] ≥ k. Denote by f(k,w) to the maximum size of a

family in Zw such that any two vectors are 1-crossing and no two vectors are k-crossing.

On one hand, we know the upper bound f(k,w) ≤ kw. For instance, fix the remainders modulo k of

the coordinates of each vector. Every pair of vectors with the same reminders, being 1-crossing, are also

k-crossing. Hence we can have at most one vector for each w–tuple of remainders and there are kw of

them.

On the other hand, f(k,w) ≥ kw−1. The following construction is an example of a family of size kw−1

with such property. Consider the family F = {(a1, . . . , aw−1,−
∑
ai : (a1, . . . , aw−1) ∈ Zw−1

k−1 )}. This

family is clearly non k-crossing and, since all vectors add to zero, F is 1-crossing.

It is conjectured by Felsner, Krawczyk and Mirek (see [8]) that, indeed, f(k,w) = kw−1 and the

construction is extremal. However, such structure is not the unique one that outputs the lower bound.

The vectors (1, 1, 1), (0, 1, 2), (1, 2, 0), (2, 0, 1) provide such a different such example with k = 2 and w = 3.

For k = 1, w = 1 or w = 2, the result is easy to check. The first non trivial case, when w = 3 was

proven by Lason, Mirek, Streib, Trotter and Walczak [8].

Question 7.1. What are the values of f(k,w) for k ≥ 2 and w ≥ 4?

8.

Problem 8 (proposed by Ervin Győri). Balister, Győri and Schelp posed this conjecture in [3]:

Conjecture 8.1. Let v1, . . . , v2d−1 ∈ F2d , with vi 6= 0 such that
∑
vi = 0. Then, there exists a pairing

of F2 = {x1, x′1}{x2, x′2} . . . {x2d−1 , x′2d−1} such that xi + x′i = vi.

For example, if vi = (1, . . . , 1) for all 1 ≤ i ≤ 2d−1, then we pair each vector with its complement.
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9.

Problem 9 (proposed by Noga Alon)). Let Gn,k be the graph whose vertices are all binary vectors

of length n, where two are adjacent iff the Hamming distance between them is at least n − k, where

1 ≤ k ≤
√
n.

Question 9.1. What is the chromatic number χ(Gn,k) of Gn,k

It is known that χ(Gn,1) = 4 for all n ≥ 2, that χ(Gn,k) ≥ k + 2 (by the fact that this graph contains

an appropriate Kneser graph, or (a bit better when n−k is odd), by applying the Borsuk-Ulam Theorem

in a way similar to the one used in the proofs that the chromatic number of the Kneser graph is large),

and that χ(Gn,k) ≤ O(k2). It can also be shown that if we consider only coverings of the set of vertices

by independent sets each of which is contained in a Hamming ball with radius smaller than (n − k)/2

then the O(k2)-estimate is tight.

Conjecture 9.1. For n and k as above χ(Gn,k) = Θ(k2).

A motivation for the problem appears in [1].
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