ESF PESC EXPLORATORY WORKSHOP

Ch@ins: The Limits Of Neutrality

Compiègne, France, 14 - 17 September 2006

Convened by:
© Jean Daillant, © Patrick Guenoun and © Carlos Marques

© SCM, CEA Saclay
© ICS Strasbourg, CNRS
The ESF Exploratory Workshop - EW05-160 “Chains : limit of neutrality” took place in Compiègne over three days and a half from September 14th, 2006 to September 17th, 2006. This meeting conveyed 28 people of 17 different nationalities in the Hotel “Au relais Napoléon” of Compiègne which presented a single place for all participants for lodging and meetings. As planned, this choice favored a lot informal discussions and contacts between participants in periods around meetings since they could meet easily in the lobby and the lodge close to the bar, even late at night. Meals were also taken at the same place, still strengthening contacts between people. This was particularly important for such a short meeting with a tight agenda but where important decisions had to be taken in order to extend the action started as depicted in conclusions.

Participants were chosen in purpose for their their personal accomplishments in the field but also because the convenors thought they could efficiently complement each other by bringing an original point of view on a subject, ion specificity, that all of them did not really tackle explicitly. As a consequence quite a number of participants were quite astonished to have been conveyed to such a meeting and, quite often, did not meet many of the others previously. We thought this was a very efficient melting which helped promoting original approaches, sometimes controversies, that the field needed.

As a matter of fact, this meeting was organized since ion specificity in physico-chemistry of short and long chains is a long standing ill-resolved problem. Lots of data have been generated by so far, mostly by macroscopic methods and a classification has emerged, the so-called Hofmeister series. Such series has never received any firm basis from microscopic models, except some recent but still controversial theoretical attempts. However, new experimental techniques are now at hand to supplement such theoretical efforts. In view of this timely perspective, the conveyors thought the situation was ripe enough to catalyze efforts with such a small-size, well-focused workshop which was then approved and granted by ESF.

The agenda was set-up by thematic sessions, concluded by a round-table each, before a general conclusive round-table on the last day morning. The first session was devoted to effects of stabilization, destabilization and crystallization under the influence of salts of various kinds. These effects are the most spectacular and led Hofmeister to propose his series by observing proteins salting-in and out. This session was then very helpful in order to recall basic facts and observations which are extremely useful in day to day life of people aiming at crystallizing proteins. In a sense this session provided the basic and common knowledge and language to participants for the rest of the meeting. In particular, definitions and classifications were deeply discussed during the following round-table.

The second session dealt with the peculiar case of lipids and surfactants where the self-assembly of these molecules depends on the nature of the added salt. Various geometries are relevant to this problem but the case of planar lipid membranes has been studied extensively, both experimentally and also by theories which are only semi-microscopic.

A third session was about polymers, where suprisingly, strong effects appear both for neutral and charged chains. In particular strong conformational changes, even like chain collapse, can be induced by salt addition. On Saturday two sessions took place and the place of theory and simulation was first debated. The real issue was clearly defined as being an adequate description of the solvent, quite often water which present a very anisotropic structure. This was an excellent introduction for the afternoon session which was devoted to charges and hydrogen bonds at surfaces. In particular it was recognized that the solvation of ions has to be carefully quantified in order to interpret neutron scattering data. Other microscopic techniques were also presented which now should provide a wealth of data for future crucial tests of theories.
Scientific content

Summary of presentations:

Stabilization, destabilization and crystallization

Werner Kunz Specific ion effects in polyelectrolyte and catanionic surfactant systems
W. Kunz discussed in detail the activity coefficients of ions, concentration effects and the role of pH. He discussed the consequences of ion specificity for gas solubility and bubble coalescence, lipid self-assembly, complexation and specific crystallization of biomorphs.

Michael Gradzielski Ionic Block copolymer Micelles and their Interpolyelectrolyte Complexes - Structure and Dynamics
M. Gradzielski mainly discussed salt effect in ionic block copolymer micelles. He described small angle neutron scattering experiments, the response of micelles to stimulations and surface tension of solutions.

Madeleine Ries Ionic specificity in Protein Crystallisation: effect on molecular interactions, solubility, polymorphism and structure
M. Ries gave a detailed account of specific effects in protein crystallization. She described generic phase diagrams and possible reversal of Hofmeister series depending on the protein.

Pierandrea Lo Nostro Specific ion effects in biological systems
P. Lo Nostro described specific effects in lipidic systems and amino acids as revealed by viscosity, optical activity and surface tension measurements.

The need for more refined predictions in order to account for macroscopical observations was emphasized during the following round table.

Lipids, Surfactants and Salts.

Epameinondas Leontidis Specific ion effects in physicochemical and biological systems. Understanding them through simulations, experiments and theory in model systems
E. Leontidis addressed the following questions: Are ion specific effects really interfacial phenomena? What is the role of the solvent? Are they local or collective effects? Why did we sometimes get irregular or inverted series? His discussion was illustrated using examples from the free surface of electrolyte solutions or monolayers and bilayers of zwitterionic lipids.

Volker Schädler Control of interactions and stability in polymer complexes - a dream?
V. Schädler discussed the control of interactions in polymer complexes with a special emphasis on polymer-polymer complexes like polyethylene oxide-polypropylene oxide and polyacrylic acid.

André Laschewsky Controlling the self-organization of poly(zwitterions) by the interaction with low molar mass salts: pathways toward advanced materials
A. Lachewsky showed how the aggregation of poly-zwitterions could be controlled with salts, and how their efficiency follows the Hofmeister series. He also showed how responsive materials can be built with such polymers.

Horia Petrache Salt screening and specific ion adsorption determine neutral-lipid
membrane interactions
H. Petrache discussed a very interesting effect where the interaction between membranes is tuned by specific adsorption controlled screening.

Rumiana Dimova Ions interacting with membranes... and in-between comes water
R. Dimova discussed the interaction of ions, in particular Ca ions with membranes and how the elasticity and shape of membranes could be affected.

Neutral ... or not so neutral polymers.

Martien Cohen-Stuart The plusses and minuses of polymer self-assembly
M. Cohen-Stuart described how polymer self-assembly can lead to complex structures like core-shell ones by playing with coulombic and other interactions. His talk was based on beautiful neutron scattering and atomic force microscopy experiments.

José M.G. Martinho Association of hydrophobically modified poly(N,N-dimethylacrylamide) in water probed by fluorescence
J. Martinho showed how fluorescence could be used to investigate the association of polymers in water.

Lennart Piculell Cat-and anion specific effects on the coil-helix transition and further aggregation of kappa carrageenan
L. Piculel described the effect of ions of the reversible coil-to-helix transition in kappa carrageenan. This effect is apparently related to changes in the area exposed to solvent. Cation binding is apparently size selective but the nature of anion binding remains unclear.

S. Cremer Investigating polymer collapse on a chip
S. Cremer described very novel experiments of polymer collapse (PNIPAM) on microfluidics chips. This method allows a range of different concentration and temperature conditions to be explored in a single experiment and can be couple to IR spectroscopy.

Heikki Tenhu Temperature-sensitive properties of poly(N-isopropylacrylamide) mesoglobules formed in dilute solutions heated above their demixing point
H. Tenhu discussed the mesostructures in polymers like PNIPAM heated above their demixing point. He showed in particular that Li ions lead to larger, less stable mesoglobules.

The differences between Na and Li were emphasised in the following round table as well as the conformation of the chains and the role of phosphates for biological applications.

What can theory and simulations predict?

Luc Belloni Specific short-range ionic effects: from primitive model to discrete solvent levels of description
L. Belloni discussed theoretical descriptions of specific effects starting with the primitive model. He showed that because of (?) limited success in the description of specific effects, discrete molecular models of the solvent are needed.

Vojko Vlachy Ion-specific effects in polyelectrolyte solutions
V. Vlachy described ion specific effects in polyelectrolyte solutions. He concentrated in particular on thermodynamic properties which are ion specific.

Matthias Boström Why intermolecular forces follow Hofmeister sequences?
M. Boström discussed in detail the role of dispersion forces on ion specificity.

Nico van der Vegt Modeling effective ion-ion interactions in aqueous solution
N. van der Vegt described in particular Monte-Carlo simulations. He argued that osmotic properties are insensitive to the details of the potential at least in the case of NaCl. A main conclusion of his talk was that polarizable water models are not necessary to get specific effects.
Alina Ciach Mesoscopic theory for highly charged colloids
A. Ciach described a density functional approach of highly charged colloids.

Most of the following round table was devoted to the discussion of water potentials and whether polarisable potentials were necessary to describe specific effects.

Charges and Hydrogen Bonds at surfaces

George Neilson Neutron and X-ray scattering studies of ionic structure in aqueous solutions.
G. Neilson described beautiful neutron scattering experiments using deuteration for the full determination of ionic structures in water.

Stefan Ulvenlund Effects of ion binding and inter-molecular hydrogen bonds on the arrangement of hydrophobic peptide helices at the air-water interface. Implications for the physical stability of peptide solutions.
S. Ulvenlund described the organization of peptides on surfaces and how they can be tuned by using ions.

Alla Oleinikova Percolation transition of hydration water at the surface of macromolecules
A. Oleinikova described beautiful simulations of the percolation of hydrogen bonds at the surface of biological macromolecules. Fractal dimensions and lifetime of clusters could in particular be determined. The fractal dimension of the largest cluster is 1.896 and its lifetime about 1 ps.

Lubos Vrbka Ion solvation at surfaces of hydrated proteins and other interfaces
L. Vrbka described impressive simulations of surface concentrations and binding of ions on proteins in solution. He showed that air-water and protein-water surfaces are very different in this respect. He also showed that chloride and sulphate bind independently.

Padmanabhan Viswanath Addressing ion specificity through grazing incidence x-ray fluorescence and sum frequency spectroscopy techniques
V. Padmanabhan showed very interesting complementary experiments. He used x-ray fluorescence to determine surface concentration of ions and sum-frequency generation spectroscopy to determine their water environment.
Assessment of the results, contribution to the future direction of the field, outcome:

At last, on Sunday morning, a conclusive round-table “Discussion across the borders, how to reconcile viewpoints, key experiments and simulations” tried to pave the way for the future of the field. In particular it appeared that larger scale collaborative instruments were needed in order to take benefits of the new theoretical and experimental approaches which have appeared, and also of comparing new data with the very large amount already collected. In that respect, re-analysis of old data and, sometimes some remakes would be very fruitful.

It was then decided by the participants that the convenors should take the initiative of a larger proposal in the framework of ESF in order to capitalize the assets of such a fruitful, though short, meeting. We then proposed the so-called SOSPECOF initiative for “Solvent mediated specific ionic effects in complex fluids” at the PESC committee of ESF for ESF Research networking programmes. Unfortunately this initiative was not approved.
Final program

Thursday, September 14th 2006

14:00 Welcome and Introduction

Afternoon Session: Stabilization. Destabilization and Crystallization.

14:30 Keynote address: Werner Kunz Specific ion effects in polyelectrolyte and catanionic surfactant systems

15:30 Michael Gradzielski Ionic Block copolymer Micelles and their Interpolyelectrolyte Complexes -Structure and Dynamics

16:00 Coffee Break

16:30 Madeleine Ries Ionic specificity in Protein Crystallisation : effect on molecular interactions, solubility, polymorphism and structure

17:00 Pierandrea Lo Nostro Specific ion effects in biological systems

17:30 Round Table lead by Rumiana Dimova

Friday, September 15th 2006

Morning Session: Lipids, Surfactants and Salts.

08:30 Keynote address: Epameinondas Leontidis Specific ion effects in physicochemical and biological systems. Understanding them through simulations, experiments and theory in model systems

09:30 Volker Schädler Control of interactions and stability in polymer complexes - a dream?

10:00 André Laschewsky Controlling the self-organization of poly(zwitterions) by the interaction with low molar mass salts: pathways toward advanced materials.

10:30 Coffee Break

11:00 Horia Petrache Salt screening and specific ion adsorption determine neutral-lipid membrane interactions

11:30 Rumiana Dimova Ions interacting with membranes... and in-between comes water

12:00 Round Table lead by Carlos Marques
Afternoon Session: Neutral ... or not so neutral polymers.
14:00 **Keynote address:** Martien Cohen-Stuart The plusses and minuses of polymer self-assembly
15:00 José M.G. Martinho Association of hydrophobically modified poly(N,N-dimethylacrylamide) in water probed by fluorescence
15:30 Lennart Piculell Cat-and anion specific effects on the coil-helix transition and further aggregation of kappa carrageenan

16:00 **Coffee Break**
16:30 S. Cremer Investigating polymer collapse on a chip
17:00 Heikki Tenhu Temperature-sensitive properties of poly(N-isopropylacrylamide) mesoglobules formed in dilute solutions heated above their demixing point
17:30 **Round Table lead by Patrick Guenoun**

Saturday, September 16th 2006

Morning Session: What can theory and simulations predict?
08:30 **Keynote address:** Luc Belloni Specific short-range ionic effects: from primitive model to discrete solvent levels of description
09:30 Vojko Vlachy Ion-specific effects in polyelectrolyte solutions
10:00 Matthias Boström Why intermolecular forces follow Hofmeister sequences?
10:30 **Coffee Break**
11:00 Nico van der Vegt Modeling effective ion-ion interactions in aqueous solution
11:30 Alina Ciach Mesoscopic theory for highly charged colloids
12:00 **Round Table lead by Werner Kunz**

Afternoon Session: Charges and Hydrogen Bonds at surfaces
14:00 **Keynote address:** George Neilson Neutron and X-ray scattering studies of ionic structure in aqueous solutions.
15:00 Stefan Ulvenlund Effects of ion binding and inter-molecular hydrogen bonds on the arrangement of hydrophobic peptide helices at the air-water interface. Implications for the physical stability of peptide solutions.
15:30 Alla Oleinikova Percolation transition of hydration water at the surface of macromolecules
16:00 **Coffee Break**
16:30 Lubos Vrbka Ion solvation at surfaces of hydrated proteins and other interfaces
17:00 Padmanabhan Viswanath Addressing ion specificity through grazing incidence x-ray fluorescence and sum frequency spectroscopy techniques
17:30 **Round Table lead by Jean Daillant**

Sunday, September 17th 2006

Morning Session: Discussion across the borders, how to reconcile distinct viewpoints, key experiments and simulations?
09:00 **Round Table lead by the five previous keynote speakers**
11:00 Closing and farewell drink
List of Participants

Convenor:

1. Jean DAILLANT
CEA Saclay
LIONS (Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire)
SCM, Bât. 125
91191 Gif Sur Yvette
France
Tel: +33 1 69 088157
Fax: +33 1 69 086640
Email: Jean.Daillant@cea.fr

Co-Convenors:

2. Patrick GUENOUN
CEA Saclay
LIONS (Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire)
SCM
Bât. 125
91191 Gif-sur-Yvette Cedex
France
Tel: +33 1 69 087433
Fax: +33 1 69 086640
Email: pguenoun@cea.fr

3. Carlos Manuel MARQUES
CNRS
UPR 22, Laboratoire de Dynamique des Fluides Complexes
Institut Charles Sadron
6, rue Boussingault
67083 Strasbourg Cedex
France
Tel: +33 3 88 414045
Fax: +33 3 88 414099
Email: marques@ics.u-strasbg.fr

ESF Representative:

4. Michel MARESCHAL
Dépt de Physique
Faculté des Sciences - CP 223
Université Libre de Bruxelles
Bld du Triomphe
1050 Bruxelles
Belgium
Tel: +32 2 650 5788
Fax: +32 2650 5767
Email: mmaresch@ulb.ac.be

Participants:

5. Luc BELLONI
CEA Saclay
LIONS
bât. 125
CEA Saclay
91191 Gif sur Yvette Cedex
France
Tel: +33 1 69 08 48 18 33
Fax: +33 1 69 08 66 40
Email: luc.belloni@cea.fr

6. Matthias BOSTRÖM
Dept. Theory & Modelling
Linköpings Universitet
581 83 Linköping
Sweden
Email: mabos@ifm.liu.se

7. Alina CIACH
Polskiej Akademii Nauk
Institute of Physical Chemistry PAN
ul. Kasprzaka 44/52
01-224 Warsaw
Poland
Email: aciach@ichf.edu.pl

8. Martien COHEN-STUART
Laboratory of Physical Chemistry and Colloid Science
Wageningen University
6700 EK Wageningen
Netherlands
Tel: +31 7 483369
Email: Martien.CohenStuart@wur.nl

9. Paul CREMER
Department of Chemistry
Texas A&M University
College Station TX 77842
United States
Email: cremer@mail.chem.tamu.edu

10. Rumiana DIMOVA
Max Planck Institute of Colloids and Interfaces
Department Theory
Am Muehlenberg 1
14476 Golm (Potsdam)
Germany
Email: dimova@mpi-kg.mpg.de
11. **Juan Manuel GARCIA-RUIZ**
Laboratorio de Estudios Cristalográficos
P.T. Ciencias de la Salud
Edificio BIC Granada
Avenida de la Innovación, 1
18100 Granada Armilla
Spain
Email: jmgruz@ugr.es

12. **Michael GRADZIELSKI**
Stranski-Laboratorium für Physikalische Chemie und Theoretische Chemie
Technische Universität Berlin
Sekretariat ER 1
Strasse des 17.Juni 112
10623 Berlin
Germany
Email: michael.gradzielski@tu-berlin.de

13. **Werner KUNZ**
Institute of Physical and Theoretical Chemistry
University of Regensburg
93040 Regensburg
Germany
Email: Werner.Kunz@chemie.uni-regensburg.de

14. **André LASCHEWSKY**
Fraunhofer Institute
Universität Potsdam
Karl-Liebknecht-Straße 24-25
14469 Potsdam
Germany
Email: laschews@rz.uni-potsdam.de

15. **Epameinondas LEONTIDIS**
Department of Chemistry
University of Cyprus
75 Kallipoleos St.
P.O. box 20537
Nicosia
Cyprus
Email: pslleon@ucy.ac.cy

16. **Pierandrea LO NOSTRO**
Department of Chemistry
University of Florence
Via della Lastruccia, 3
50019 Florence
Italy
Email: pln@csgi.unifi.it

17. **José MARTINHO**
Departamento de Engenharia Química
Instituto Superior Técnico
Universidade Técnica de Lisboa
Av. Rovisco Pais
1049-001 Lisboa
Portugal
Tel: +351 21 841 92 50
Fax: +351 21 353 69 85
Email: jgmartinho@ist.utl.pt

18. **George NEILSON**
Department of Physics
Bristol University
Bristol BS8 1TL
United Kingdom
Email: George.W.Neilson@bristol.ac.uk

19. **Alla OLEINIKOVA**
Abt. Physikalische Chemie
Universität Dortmund
Otto-Hahn-Str. 6
44221 Dortmund
Germany
Email: alla@heineken.chemie.uni-dortmund.de

20. **Horia PETRACHE**
Department of Physics
Indiana Univ Purdue Univ Indianapolis
402 N. Blackford St.
LD 156R
Indianapolis IN 46202
United States
Email: hpetrach@iupui.edu

21. **Lennart PICULELL**
Department of Physical Chemistry 1
Lund University
Getingevägen 60
Box 124
221 Lund
Sweden
Email: Lennart.Piculell@fkem1.lu.se

22. **Madeleine RIES**
Laboratoire de Cristallographie et RMN Biologiques (UMR 8015)
Faculte de Pharmacie
Université Rene Descartes - Paris V
4, avenue de l'Observatoire
75270 Paris Cedex 06
France
Email: madeleine.ries@univ-paris5.fr
23. Volker SCHÄDLER
BASF
BASF-ISIS Team
Institut de Science et d'Ingénierie Supramoléculaires (ISIS)
Université Louis Pasteur
8, allée Gaspard Monge
67083 Strasbourg
France
Email: schaedler@isis.u-strasbg.fr

24. Heikki TENHU
Laboratory of Polymer Chemistry
University of Helsinki
PO Box 55
Helsinki
Finland
Email: heikki.tenhu@helsinki.fi

25. Stefan ULVENLUND
Department of Physical Chemistry 1
Lund University
Getingevägen 60
Box 124
221 Lund
Sweden
Email: stefan.ulvenlund@fkem1.lu.se

26. Nico VAN DER VEGT
Max-Planck-Institute for Polymer Research
Ackermannweg 10
55128 Mainz
Germany
Email: vdervegt@mpip-mainz.mpg.de

27. Padmanabhan VISWANATH
Max Planck Institute of Colloids and Interfaces
Department Interfaces
Wissenschaftspark Golm
14476 Potsdam
Germany
Email: viswanath.padmanabhan@mpikg.mpg.de

28. Vojko VLACHY
Faculty of Chemistry and Chemical Technology
University of Ljubljana
Snežniška 5
1000 Ljubljana
Slovenia
Tel: +386 1 24-19-406
Email: vojko.vlachy@fkkt.uni-lj.si

29. Lubos VRBKA
Academy of Sciences of the Czech Republic
Center for Biomolecules and Complex Molecular Systems
Institute of Organic Chemistry and Biochemistry
Flemingovo náměstí 2
166 10 Prague 6
Czech Republic
Tel: +420 220 410 316
Email: lubos.vrbka@uochb.cas.cz

Statistical information on participants

Total number of participants: 27 (excluding ESF Representative)

By country of residence (work):

<table>
<thead>
<tr>
<th>Country</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>CY</td>
<td>1</td>
</tr>
<tr>
<td>CZ</td>
<td>1</td>
</tr>
<tr>
<td>DE</td>
<td>7</td>
</tr>
<tr>
<td>FI</td>
<td>1</td>
</tr>
<tr>
<td>FR</td>
<td>6</td>
</tr>
<tr>
<td>IT</td>
<td>1</td>
</tr>
<tr>
<td>NL</td>
<td>1</td>
</tr>
<tr>
<td>PL</td>
<td>1</td>
</tr>
<tr>
<td>PT</td>
<td>1</td>
</tr>
<tr>
<td>SE</td>
<td>3</td>
</tr>
<tr>
<td>SI</td>
<td>1</td>
</tr>
<tr>
<td>UK</td>
<td>1</td>
</tr>
<tr>
<td>US</td>
<td>2</td>
</tr>
</tbody>
</table>

By gender:

24 Male
3 Female