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The European Science

Foundation acts

as a catalyst

for the development

of science by bringing

together leading scientists

and funding agencies

to debate, plan and

implement pan-European

initiatives.

Mathematical statistical physics is going through a

phase of rapid and exciting development. Spatially

extended systems, consisting of a large number of

mutually interacting components, exhibit intriguing

phenomena, many of which are currently beginning

to be understood at the mathematical level through

the application of powerful probabilistic techniques.

Points of departure for the mathematician are model

systems subject to a random dynamics acting on the

components of the system. This microscopic dynam-

ics defines a transformation on the phase space of

the system, which typically is highly complex. The

important challenge is to give a precise mathemati-

cal treatment of the interesting physics that arises

from this complexity. The macroscopic behaviour of

the system is the result of an appropriate space-time

rescaling in combination with probabilistic limit

theorems.

The main goal of this programme is to bring

together the core of the researchers in Europe that

are active in this area of mathematical statistical

physics. Researchers are widely scattered and work

in small groups, but European contributions have

been extensive and of high quality. The network

activities will help to strengthen the ties between the

various national groups and to make the

developments more accessible for young researchers.

The programme is unique in bringing together

mathematical physicists and probabilists in Europe

working in statistical physics and stochastic

modelling of natural phenomena. Mathematical

statistical physics is widely known to foster inter-

disciplinary approaches and to provide mathematical

expertise and training in analysing and modelling

complex dynamical processes. Mathematical

statistical physics continues to have a major impact

on large parts of mathematics and physics. Ideas

from the subject areas covered by the programme

are beginning to play a crucial role in the

mathematisation of computer science, biology,

economics and communication technology as well.

The running period of the ESF scientific programme

RDSES is January 2002 – December 2006.

Phase Transitions and Fluctuation Phenomena
for Random Dynamics in Spatially Extended
Systems (RDSES)
An ESF scientific programme

-6 -4 -2 2 4

-8

-6

-4

-2

2

4

6

8

-6 -4 -2 2 4

-8

-6

-4

-2

2

4

6

8



2

Scientific background

In spatially extended systems the

components interact with each other and

with their environment locally, but this

can lead to a global dependence,

resulting in anomalous fluctuation

phenomena and phase transitions. The

RDSES programme is concerned with

aspects of this behaviour both in and out

of equilibrium. The concept of entropy is

essential in connecting the microscopic

dynamics with the macroscopic

phenomena. This needs a mathematical

understanding of the interplay between

different space-time scales, through

renormalisation methods in combination

with multi-scale perturbation techniques.

The programme centres around the

following research topics:

. Gibbsian versus non-Gibbsian spin

systems

. Polymers and self-interacting random

processes

. Interfaces and surface phenomena

. Disordered media

. Relaxation to equilibrium and

metastability

. Hydrodynamic behaviour of

conservative systems

. Entropy production and fluctuations far

from equilibrium

. Granular media and sandpile dynamics

Gibbsian versus non-Gibbsian spin
systems
In many domains of statistical mechanics

a description of the state of a thermo-

dynamic system in terms of an effective

Hamiltonian is employed, either

explicitly or implicitly. Renormalisation-

group theory is a prime example. It has

been found that a description in terms of

Gibbs measures is often impossible in

circumstances where this was not expected.

Part of the Gibbs theory survives in

certain examples, either by making use of

the notion of “weak Gibbsianness” or by

analysing large deviation properties and

associated entropy functions. Despite the

existence of many important partial

results, a general description is still

lacking and good criteria for what is and

what is not possible are unknown.

Work is needed to come to a Gibbsian

characterisation of many-particle systems

in a non-equilibrium state, for instance,

in a quasi-equilibrium state that survives

over extremely large time scales

(“metastability”). A milestone would be

to find a numerically observable criterion

for transitions between Gibbsian and

non-Gibbsian behaviour. Such transitions

have recently been found to occur in

Ising systems under a stochastic spin-flip

dynamics.

Models with a “hard core” interaction do

not fit into a Gibbsian description.

Examples are dimer models, where

dumbbell-shaped molecules cover a

surface. Long-range interactions are

typical for such models and lead to

complex phase diagrams (see Figure 1 –

cover page, and caption p. 8).

Polymers and self-interacting random
processes
Polymers and self-interacting random

processes are important in the physical,

chemical and engineering sciences. Many

of the problems in the description of

these systems are due to long-range

interactions (such as excluded-volume-

effects) and are mathematically very

challenging. Examples are: obtaining
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bounds for the end-to-end distance in

two- and three-dimensional polymers,

understanding the nature of the collapse

transition for polymers with mixed

attractive and repulsive interaction, and

describing the behaviour of hetero-

polymers near wiggly interfaces.

There are spectacular developments in

two dimensions, based on conformal

invariance and the Stochastic Löwner

Evolution. Key successes are the

derivation of the intersection exponents

of Brownian motion and the critical

exponents for loop-erased random walk

and percolation. Perspectives are

opening up for solving long-standing

open problems, like identifying the

scaling limit of two-dimensional self-

avoiding walk and constructing self-

repelling random motion in continuous

space and time, leading to new types of

stochastic differential equations.

Related work concerns the identification,

through the lace expansion, of the scaling

limit for high-dimensional critical

percolation in terms of super-Brownian

motion (see Figure 2). Another major

challenge is to decide transience versus

recurrence for high-dimensional

reinforced random walk.

Interfaces and surface phenomena
Interfaces and surface phenomena are of

fundamental importance in spatially

extended systems. They arise from

inhomogeneous or unstable initial

conditions or from geometric constraints,

typically in combination with conservation

laws. Of crucial interest are wetting

phenomena and droplet growth. Here,

remarkable recent developments have

been the discovery of a two-dimensional

wetting transition and the construction of

the three-dimensional Ising-spin droplet

and lattice-gas droplet (see Figure 3).

Other challenging problems arise from

the interaction of random impurities with

an interface, for instance, hetero-

polymers near an oil-water interface. Of

primary importance are further

investigations on the nature of various

associated phase transitions. Much is

known in the deterministic case, like the

behaviour of fronts in partial differential

equations. But the random case, which is

essential at the microscopic and the

mesoscopic scale, still needs ripening,

with notable results so far for Ising and

solid-on-solid models in equilibrium.

Figure 2: The figure shows the evolution of a random mass distribution, with time
running vertically and space running horizontally. Darker shadings represent higher
mass, and the parabola shows the spatial scaling.
The mass distribution arises from an embedding of a large critical branching tree. A
superposition of all the mass onto the spatial axis produces a random mass distribution
whose total mass is a random variable, say K. This superposition, with mass rescaled
by 1/K and space rescaled by 1/K1/4, has the same distribution as “Integrated
Super-Brownian Excursion”.
© Bill Casselman and Gordon Slade (Vancouver)

Figure 3: In a three-
dimensional lattice gas with
Kawasaki dynamics,
particles perform
independent random walks
with two restrictions: no two
particles can occupy the
same site (exclusion); two
neighbouring particles have
a tendency to stick together
(attraction).
In the limit of low
temperature and low density
the gas will take a long
time to condensate. The
threshold for condensation
is the formation of a critical
droplet that is large enough
to absorb other particles
rather than to evaporate.
Attached to one side of the
three-dimensional critical
droplet appears a critical
droplet for the two-
dimensional lattice gas with
Kawasaki dynamics.
© Francesca Nardi (Rome)
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A unification of different problems in

statistical physics is envisioned through

the study of equilibrium interface

fluctuations at the microscopic scale.

Surprisingly, various quite different two-

dimensional models of one-dimensional

interfaces can be mapped onto a single

class of mathematical models. Examples

come from percolation theory, transport

theory, quantum theory, random matrix

theory, and combinatoric studies in

computer science. A new universality is

showing up in the scaling behaviour, with

the Wigner semi-circle distribution and

the Tracy-Widom distribution appearing

as attractors.

Disordered media
The application of statistical mechanics

to disordered systems (such as

amorphous materials, biomolecules, and

neural networks) has proven to be a

mathematically enormously challenging

problem. For instance, controversies about

the nature of the phase structure in

realistic spin-glass models are caused, in

part, by the tremendous difficulties that

come up when doing laboratory experiments

or numerical simulations. These difficulties

are typically provoked by long-range

interactions, causing a complex “free-

energy landscape” that gives rise to

intricate transients and slow relaxation to

equilibrium. In this situation heuristic

methods often fail to give conclusive

results and rigorous mathematical

methods are pivotal. The fact that these

methods are effective was demonstrated,

for instance, in the resolution of the

controversy around the lower-critical

dimension for the random-field Ising

model.

One of the most challenging problems at

present is to understand the phenomenon

of replica symmetry breaking in realistic

spin-glass models and to investigate

dynamical aspects of complex disordered

systems, in particular, the phenomenon of

aging. There has been dramatic progress

in the understanding of mean field spin-

glasses over the last few years, and a

universal random mechanism based on

continuous-state branching processes

emerges as a candidate for explaining the

asymptotic fluctuations in these systems.

Still, a rigorous proof of this connection

for the Sherrington-Kirkpatrick model

remains the benchmark problem in the

field. Based on the progress here, as well

as on some new tools developed for the

analysis of metastability, a number of

rigorous results on aging in the stochastic

dynamics of spin-glass models are also

emerging. These issues are particularly

important, as it was found recently that

some key problems in computer science,

artificial intelligence, biology, economics

and communication technology can be

mapped onto problems of spin-glass

type. Examples are the turbo-codes,

which are spectacularly successful but

are mathematically ill understood.

Closely related problems concern the

behaviour of random walks in random

environments, where the last years have

brought impressive progress, in particular,

in high dimensions. Here, large deviation

theory has again been the driving force.

Other hard open problems are proving

mixing properties for hard-ball dynamics

and related properties for diffusion in

random media, where spectacular

progress has been made in the past

decade, but which is mathematically full

of pitfalls.

Relaxation to equilibrium and
metastability
The problem of relaxation to equilibrium

goes back a very long time, but even

today detailed mathematical results are

missing, most notably for conservative

dynamics. The simplest model is that of a

lattice gas dynamics reversible with

respect to the canonical Gibbs measure.

Although in recent years substantial

progress has been made in the analysis of

the relaxation in this model, many

problems remain open, like determining

the shape of large growing droplets. One

of the goals is the extension of the

“diffusive scaling of the relaxation time”,
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known to be valid at high temperature, to

the whole one-phase region. The major

obstacle here is the fact that, due to

fluctuations, there are regions in the gas

where the local particle density has

anomalous values that lie in the phase-

coexistence interval. Thus, there is a

need to study how anomalous local

fluctuations in the density profile relax

away.

Such a problem is also encountered in

the study of high-temperature continuous

systems, in low-temperature plane

rotators with a Glauber dynamics, and in

dynamics of solid-on-solid surfaces. Its

solution would open up the door to

several important developments. Other

related problems of current interest come

from the theory of turbulence and the

spatial-temporal relaxation of driven

stochastic Navier-Stokes equations.

In the last decade there has been a

remarkable development in the theoretical

study of metastability and nucleation.

Following the “pathwise approach” to

metastability, it has proved to be possible

to obtain sharp asymptotics for the

relaxation time from the metastable to the

stable state and to clarify the mechanisms

of transition in the case of the two- and

three-dimensional stochastic Ising model

at low temperature. A milestone would be

the extension of these results to

conservative dynamics. Conservation

laws cause long-range dependence and

therefore change the relaxation pattern.

An important goal is the description of

the relaxation from a metastable state in

a large volume, in particular, the growth

and the motion of supercritical droplets

and the depletion of the supersaturated

vapour around them.

Another major challenge is to understand

catalytic and mutually catalytic interacting

particle systems, where particles of one

type evolve in a way that depends on the

presence of particles of another type, and

vice versa (see Figure 4). Here, slow

transient behaviour and clustering

phenomena play a central role.

Figure 4: The figure shows a computer simulation of a catalytic
branching random walk. Initially there are 2000 green particles and
2000 red particles, placed on an array of 500 sites with a periodic
boundary condition that turns the array into a loop. Time runs over
750 units. The evolution is as follows: at rate 1, green particles move
to the left, move to the right, or stand still and split into 0 or 2 new
green particles (each with probability 1/2);  red particles do the
same, except that the splitting occurs at a rate proportional to the
number of green particles present at the same site. Thus, the green
particles act as catalyst for the red particles. Without the green
particles, the red particles would perform independent random walks
at rate 1. © Achim Klenke (Cologne)

Hydrodynamic behaviour of
conservative systems
One of the basic problems of non-

equilibrium statistical mechanics is the

derivation of hydrodynamic equations.

On the proper space-time scales,

interacting particle systems develop an

autonomous behaviour for a collection of

conserved quantities, such as energy,

momentum and density. Progress has

been fast over the past decade, due to

new probabilistic and analytic techniques.

It is believed that applications of these

techniques will help to clarify a number

of phenomena that are currently still in

the dark. Particularly urgent here are a

definite mathematical discussion of

multi-component systems of hyperbolic

conservation laws, which typically arise

in the hydrodynamic limit for systems of

particles of different types and which are

notoriously difficult to analyse.

Another task is to investigate the diffusive

behaviour of non-reversible interacting

particle systems (like the asymmetric simple
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exclusion process, interacting Ornstein-

Uhlenbeck processes, and Hamiltonian

systems with noise), in particular, to

solve the bulk- and the self-diffusion-

problem. More effort is needed to

investigate systems for which the invariant

measure is not known explicitly, as is the

case for the majority of transport problems.

A detailed analysis of the hydrodynamic

behaviour of lattice gases under a

conservative dynamics can be carried out

in the regime where phase segregation

takes place. Here the main goal is to

analyse the motion of the Wulff droplet

of the minority phase in a large volume

with suitable boundary conditions and to

obtain bounds for its diffusion constant.

Entropy production and fluctuations
far from equilibrium
There has been a recent burst of activity

in the statistical mechanics of steady-state

non-equilibrium systems. Inspiration

comes from new ideas in the theory of

dynamical systems and from recent

extensive numerical work employing so-

called thermostated dynamics. The area

is witnessing the slow emergence of a

microscopic theory, from which not only

the thermodynamics of irreversible

processes close to equilibrium can be

derived, but which promises to go far

beyond the linear regime. A central role is

played by the notion of entropy production.

In the phenomenological theory this

quantity appears as the dissipated heat in

a driven non-equilibrium system.

Since the recent work of Cohen and

Gallavotti, a symmetry has been established

for the fluctuations in steady-state non-

equilibrium systems, the consequences of

which are thought to be similar to those

of the Ward identities in field theory.

This novel development promises to

profoundly affect the area of non-equili-

brium statistical physics, which has a

much less solid mathematical foundation

than equilibrium statistical physics.

In a recent approach, based on a Gibbsian

hypothesis, the space-time distribution of

the particle trajectories are Gibbsian and

the entropy production is identified with

that part of the space-time action functional

that breaks the time-reversal invariance.

In this setting, the fluctuation symmetries

turn out to be an immediate consequence

of the Dobrushin-Lanford-Ruelle

conditions characterising Gibbsianness.

The most immediate applications lie in

the theory of non-reversible interacting

particle systems, where there is now

good hope to establish local fluctuation

theorems. This will represent important

progress, because the resulting symmetry

laws are expected to be very general.

Further input is needed from the theory

of large deviations for spatially extended

stochastic dynamics.

Granular media and sandpile
dynamics
Granular media have become an active

domain of research over the last few

years. Both computer simulations and

laboratory experiments have revealed a

wealth of new phenomena and often

unexpected behaviour from the

traditional point of view of kinetic theory

and soft condensed matter. Mathematical

work is far behind. It suffices to compare

the simulation work on sandpile

dynamics with what is known rigorously,

to appreciate that a bundling of the

expertise present in the current

programme is badly needed to give this

topic a proper mathematical impetus.

A key problem is that of the

thermodynamic limit of sandpile

dynamics. The major obstacle here is to

beat the strong long-range dependence in

the dynamics, which make the role of

boundary conditions and finite-volume

effects unclear. A milestone would be to

obtain a rigorous derivation of some of

the basic features of the infinite-volume

standard abelian sandpile process in high

dimensions, such as anomalous scaling,

non-Gaussian fluctuations and “self-

organised criticality”.
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Activities

The activities of the RDSES programme

are:

. Workshops

Each year, two thematic workshops will

be organised (20-30 participants) and

one brainstorm meeting (10 participants).

The topics are selected by the Steering

Committee. Suggestions are welcome

and should be directed to the chair,

Frank den Hollander.

. Exchange visits

A visitor exchange programme is active

for visits of up to two weeks, with an

electronic open call four times a year.

Applications should be directed to the

ESF administrator of the programme,

Catherine Werner. The deadlines for

application are: 1 January, 1 April, 1 July,

1 October.

. Summer schools

Three summer schools are planned

during the running period of the

programme; one large summer school

(in the Summer of 2005) and two small

summer schools (one in the Spring of

2003).

. Website

A homepage is maintained on the ESF

website, where all the relevant inform-

ation can be found.

. Newsletter

Twice per year, a newsletter will be sent

around, starting in 2003.

Funding

ESF scientific programmes are principally

financed by the Foundation’s Member

Organisations on an à la carte basis.

RDSES is supported by:

Fonds zur Förderung der

wissenschaftlichen Forschung, Austria;

Österreichische Akademie der

Wissenschaften, Austria; Fonds voor

Wetenschappelijk Onderzoek -

Vlaanderen, Belgium; Akademie věd

České republiky, Czech Republic;

Grantová agentura České republiky,

Czech Republic; Statens Naturvidens-

kabelige Forskningsråd, Denmark;

Suomen Akatemia/Finlands Akademi,

Finland; Centre National de la Recherche

Scientifique, France; Deutsche

Forschungsgemeinschaft, Germany;

Hungarian Scientific Research Fund,

Hungary; Nederlandse Organisatie voor

Wetenschappelijk Onderzoek,

Netherlands; Polska Akademia Nauk,

Poland; Vetenskapsrådet, Sweden;

Schweizerischer Nationalfonds zur

Förderung der wissenschaftlichen

Forschung/Fonds National Suisse de la

Recherche Scientifique, Switzerland;

Engineering and Physical Sciences

Research Council, United Kingdom.
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Figure 1 (cover page):
In the dimer model (or domino-
tiling model) one considers the
coverings of a two-dimensional
lattice with dimers that cover pairs
of adjacent sites. When the
energy assigned to the dimers is
spatially periodic, the phase
diagram can be computed
rigorously as a function of a two-
component magnetic field. In the
phase diagram there are 12
distinct phases:  6 outer phases
(unbounded coloured regions),
which are “frozen” and have no
fluctuations;  5 inner phases
(bounded coloured regions),
which are “gaseous” and display
exponential decay of correlations;
1 central phase (white region),
which is “liquid” and displays
polynomial decay of correlations.
© Rick Kenyon (Paris)

IR
EG

 S
tra

sb
ou

rg
 - 

D
ép

ôt
 lé

ga
l: 

av
ril

 2
00

3 
- N

° 
d’

or
dr

e:
 0

31
26

6

’

˛


