ESF Short Visit Scientific Report (Ref: 1115)

Rongfeng Sun

July 12, 2006

I visited ÚTIA (Institute of Information Theory and Automatization) in Prague, Czech Republic, to work with Dr. Jan M. Swart on the so-called *Brownian net*. Here we describe the main results in the forthcoming paper [4].

The Brownian web consists of a family of one-dimensional coalescing Brownian motions, starting from every point in space and time $\mathbb{R} \times \mathbb{R}$. This object was first proposed by Arratia [1], and later studied by Tóth and Werner [5], and more recently by Fontes, Isopi, Newmand and Ravishankar [2, 3], where a suitable topology was introduced and the term *Brownian web* was coined. One of the main motivations for introducing the Brownian web is that it arises as the diffusive scaling limit of the paths of a system of one-dimensional coalescing random walks, starting from every point in the space-time lattice $\mathbb{Z} \times \mathbb{Z}$ (or $\mathbb{Z} \times \mathbb{R}$ for the continuous time analogue). The Brownian web is believed to be the universal scaling limit of general one-dimensional coalescing systems. Furthermore it serves as the graphic representation for a continuum analogue of the voter model. The *Brownian net* we propose in this work is motivated by the observation that, it is the diffusive scaling limit of the paths of systems of branching-coalescing random walks (with weak branching), starting from every point in the even space-time sublattice $(\mathbb{Z} \times \mathbb{Z})_{\text{even}}$ where the two coordinates have the same parity.

First we introduce the system of discrete branching-coalescing random walks that motivated the Brownian net. We define the branching-coalescing random walks through a graphical representation. Consider the even space-time sublattice $(\mathbb{Z} \times \mathbb{Z})_{\text{even}} := \{(x,t) \in \mathbb{Z} \times \mathbb{Z} : x + t \text{ is even}\}$. Fix $\epsilon \in [0,1]$, which will be a branching parameter. Independently for each $(x,t) \in (\mathbb{Z} \times \mathbb{Z})_{\text{even}}$, with probability ϵ , we draw two directed edges from (x,t): $(x,t) \to (x-1,t+1)$ and $(x,t) \to (x+1,t+1)$; with probability $1-\epsilon$, we draw a single directed edge from (x,t), where $(x,t) \to (x-1,t+1)$ and $(x,t) \to (x+1,t+1)$ is drawn with probability $(1-\epsilon)/2$ each. We denote the resulting random variable taking values in the space of directed edge configurations by \aleph^{ϵ} . The graphical configuration \aleph^{ϵ} determines the evolution of a system of branching-coalescing random walks (which also provides a coupling for all possible initial configurations), where given an initial set of occupied sites $A \subset (\mathbb{Z} \times \mathbb{Z})_{\text{even}}$, the set of occupied sites at time t is simply the set of sites in $\mathbb{Z} \times \{t\}$ which lie on a path of directed edges in \aleph^{ϵ} originating from some site in A. It is easily seen that \aleph^{ϵ} defines a system of branching-coalescing random walks, where independently, at each time each walk with probability $(1 - \epsilon)/2$ jumps one unit to the left, with probability $(1 - \epsilon)/2$ jumps one unit to the right, and with probability ϵ branches into two random walks with one walk jumping one unit to the left and the other one unit to the right; and whenever two random walks land on the same site, they coalesce instantly. The set of branching-coalescing random walk paths with initial configuration $A \subset (\mathbb{Z} \times \mathbb{Z})_{\text{even}}$ is simply the set of paths of directed edges in \aleph^{ϵ} originating from A.

Given \aleph^{ϵ} , we denote the set of paths of directed edges in \aleph^{ϵ} starting from any site in $(\mathbb{Z} \times \mathbb{Z})_{\text{even}}$ by U^{ϵ} , i.e., the paths of the system of branching-coalescing random walks starting from every site in $(\mathbb{Z} \times \mathbb{Z})_{\text{even}}$. Let S_{ϵ} denote the space-time scaling $(x, t) \to (\epsilon x, \epsilon^2 t)$, and when applied to a set of paths K, let $S_{\epsilon}K$ denote the set of paths obtained by scaling the graph of each path in K by the map S_{ϵ} . Also recall the topology introduced by Fontes, Isopi, Newman and Ravishankar [2, 3] for the Brownian web, where (Π, d) denotes the space of continuous paths starting at some space-time point in $\mathbb{R} \times \mathbb{R}$ (a compactification of $\mathbb{R} \times \mathbb{R}$), d is a suitable metric on Π which makes it complete and separable. Then the Brownian web takes values in $(\mathcal{H}, d_{\mathcal{H}})$, the space of compact subsets of (Π, d) , where $d_{\mathcal{H}}$ is the Hausdorff metric on compact sets of paths induced by d. $(\mathcal{H}, d_{\mathcal{H}})$ again is a complete separable metric space.

Our main result is the following:

Theorem: As $(\mathcal{H}, d_{\mathcal{H}})$ -valued random variables, $S_{\epsilon}\overline{U^{\epsilon}}$ (as $\epsilon \to 0$) converges weakly to a $(\mathcal{H}, d_{\mathcal{H}})$ -valued random variable \mathcal{N} , which we call the *Brownian net*, whose distribution is uniquely determined by the following properties:

- (i) For each deterministic $z \in \mathbb{R} \times \mathbb{R}$, almost surely there is a unique leftmost path l_z and a unique rightmost path r_z in \mathcal{N} starting from z, i.e., any other path in \mathcal{N} starting from z is bounded between l_z and r_z .
- (ii) For any finite deterministic set of space-time points $\{z_1, \dots, z_m\} \cup \{\tilde{z}_1, \dots, \tilde{z}_n\} \subset \mathbb{R} \times \mathbb{R}$, $\{l_{z_1}, \dots, l_{z_m}\} \cup \{r_{\tilde{z}_1}, \dots, r_{\tilde{z}_n}\}$ is distributed such that each l_{z_i} (resp. $r_{\tilde{z}_j}$) is distributed as a standard Brownian motion with drift -1 (resp. +1) starting from z_i (resp. \tilde{z}_j), paths in $\{l_{z_1}, \dots, l_{z_m}\} \cup \{r_{\tilde{z}_1}, \dots, r_{\tilde{z}_n}\}$ evolve independently when they are apart, paths in $\{l_{z_1}, \dots, l_{z_m}\}$ (resp. $\{r_{\tilde{z}_1}, \dots, r_{\tilde{z}_n}\}$) coalesce when they meet, and paths in $\{l_{z_1}, \dots, l_{z_m}\}$ and $\{r_{\tilde{z}_1}, \dots, r_{\tilde{z}_m}\}$ interact by sticky reflection when they meet.
- (iii) For any two deterministic countable dense subsets $\mathcal{D}_{l}, \mathcal{D}_{r} \subset \mathbb{R} \times \mathbb{R}$, and for any deterministic countable dense subset $\mathcal{T} \subset \mathbb{R}$, almost surely \mathcal{N} is the closure in (Π, d) of the set of continuous paths obtained by hopping a finite number of times between paths in $\{l_{z}\}_{z \in \mathcal{D}_{l}}$ and $\{r_{z}\}_{z \in \mathcal{D}_{r}}$ at times in \mathcal{T} .

In addition, more properties for the Brownian net are established, including computing exactly the expected particle density of the random point configuration on \mathbb{R} at time tinduced by paths in \mathcal{N} starting before or at time 0. Another interesting object related to the Brownian net is the subset of the Brownian net paths which start at $t = -\infty$, which we call the *backbone* of the Brownian net. The backbone is invariant with respect to spacetime translation and time reflection. The point configuration at any fixed time t induced by the paths in the backbone is a Poisson point configuration with intensity 2. The point configuration at time t induced by the paths in the Brownian net starting from a fixed finite space-time region converges weakly to the Poisson point configuration with intensity 2 (in the space of closed subsets of \mathbb{R} with Hausdorff metric) as $t \to \infty$. For more details, see [4].

References

- [1] R. Arratia, Coalescing Brownian motions and the voter model on Z, unpublished partial manuscript.
- [2] L.R.G. Fontes, M. Isopi, C.M. Newman, K. Ravishankar, The Brownian web, Proc. Nat. Acad. Sciences 99, 15888-15893, 2002.
- [3] L.R.G. Fontes, M. Isopi, C.M. Newman, K. Ravishankar, The Brownian web: characterization and convergence, Ann. Probab. 32(4), 2857–2883, 2004.
- [4] R. Sun, J. M. Swart, The Brownian net, in preparation.
- [5] B. Tóth and W. Werner, The true self-repelling motion, Probab. Theory Related Fields 111, 375–452, 1998.