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Introduction

Nanoparticles dispersed in biological fluids are rapidly covered by a tightly bound
layer of proteins (and other biomolecules) — the 'protein corona’ |2]. The nature
and composition of the protein corona is dependent on nanoparticle characteristics
(such as material, size, charge etc.) in ways that are currently being explored. In
particular, carboxylated and amine-modified polystyrene nanoparticles (PS-NPs)
of the same size, while based on the same polymer, exhibit different protein coronas
[3]. Interestingly, these two types of nanoparticles also induce vastly different
behavior once internalized by cells: The carboxylated PS-NPs do not affect the
cell |4, [1], while the amine-modified PS-NPs induce cell death [5, [1], suggesting a
role of the protein corona (and/or its intracellular evolution) in the response.

Within the host group, a theoretical framework has previously been developed
for describing the behavior of nanoparicles (NPs) inside the cell, as well as their
perturbations on organelles (e.g. mitochondria). The response of mitochondria
is particular intriguing, as the mitochondria have been shown to be involved in
the cell death that takes place due to the presence of the amine-modified PS-NPs
[, 15].

With this background, the goal of the current project was to describe mito-
chondria from a statistical point of view, in order to facilitate an assessment of the

kinetics involved. Ultimately, knowing the kinetics could aid the understanding
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of how the response of the two types of PS-NPs (the two types of protein coro-
nas) come about. The proposed description of the mitochondria is based on the
framework developed within the group which looks at the spatial correlation of
distances between mitochondria. The difference between the original method and
the method developed here is that mitochondria are defined pixel-based rather
than object-based. To identify mitochondria, the image is segmented, divided into
mitochondria and non-mitochondria pixels, semi-automatically.

The results, using the pixel-based approach, are supportive of the results from

an object-based method, although it is computationally much more expensive.

Methods

Images: Images from cells from the A549 cancer cell line have been obtained
using spinning disk confocal microscopy. This way stained organelles (e.g. mito-
chondria) and fluorescent nanoparticles (NPs) can be visualized and located. It
is even possible to follow the uptake and the responses of the organelles to the
NPs as a function of time. This results in 3-dimensional images over several time

frames.

Segmentation of mitochondria: The goal in the pixel-based approach to
quantify cell behavior is to focus only on one type of organelle, in this project
mitochondria. The most straight forward approach is to divide the image into
mitochondria and non-mitochondria pixels. This segmentation is done best in two
steps, the first being the manual identification of the cell and the second the iden-
tification of the mitochondria via thresholding. Simply thresholding the complete
image is not sufficient due to different intensity values of the cell, mitochondria
and non-cell in different time frames and z-planes. It would result in either missing
most mitochondria or including non-mitochondria and specifically non-cell parts
in the analysis.

After segmentation of the mitochondria, the included area is smoothed to get
a more realistic view. All pixels which fall into the segmented areas are considered
in the further analysis. Examples of the identification of the cell can be seen in
Figure [[l and an example of the segmentation of the mitochondria in Figure 2

The segmentation of mitochondria is done according to the following algorithm:



1. Segmentation of cell

i) Average image over all frames to reduce fluctuations in intensity values

allowing for better identification of the cell
ii) Define polygon around the cell

iii) Allow for a margin of error

2. Segmentation of mitochondria

i) Threshold each z-plane individually to include all mitochondria

ii) Filling of holes of thresholded images

iii) Closing of thresholded images
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Spatial correlation of distances: The spatial correlation or pair correlation
function requires to compute all pairwise distances of mitochondria pixels. This
results in large amounts of distances and of required computer memory, therefore
the distances could not all be stored. Hence, the distances were included in a
histogram with very small bin size (0.05um), resulting in dist. The bin edges can
be considered as different radii r for further calculations. From this histogram the
normalized distribution of distances dist,, can be computed.

, dist(r)
dist,(r) = =—— 1
ist(r) S~ dist (1)
From Equation [I the pair correlation function g(r) (Equation [2) is calculated.

or) = 2ohal) )

where r is the radius of the sphere around the target mitochondria pixel and dr

the bin size of the histogram.

Results

Segmentation of cells: The outline of the cell is defined manually as a polygon.

In the images in Figure[Il which are averaged over the third dimension (z-planes),
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the cell sets itself apart nicely from the rest of the image. The solid black line
represents the polygon and the dashed line represents a margin of error which is
included in the subsequent analysis.

(a) 20 min (b) 45 min (c) 120 min (d) 180 min

Figure 1: Segmentation of the cell is done by fitting of a polygon around the cell
(solid line) and allowing for a margin of error (dashed line). |(a){(d)| show different

time points in the analysis of the same cell.

(a) After polygon fitting (b) After thresholding (c) After processing

Figure 2: Thresholding of mitochondria in the same cell as in Fig. [ shows
only the segmented cell. shows the thresholded image. m shows the image after

smoothing. The pixels from [(c)| are used in further analysis as mitochondria.

Thresholding of mitochondria: An example of the thresholding can be viewed
in Figure Pl For each cell the threshold has been determined manually for each
z-plane. Thresholds range from 200 — 800 as intensity value cut-offs. Applying
only the simple threshold would result in Figure . Since it is obvious that
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mitochondria should be more connected and smoother than in Figure the
previously described processing is applied resulting in Figure 2(c)|
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Figure 3: Normalized counts of pairwise distances for two different cells at different
time points. @ and @ show results for the pixel-based approach and and @
for the object-based approach. @ and are the same cell as well as @ and @

Spatial correlation of distances: Computing the spatial correlation of the
mitochondria is computationally very expensive. After segmentation of the mi-
tochondria there are roughly 24,000 — 50, 000 pixels in each frame which are mi-
tochondria. That corresponds to roughly 300,000,000 — 1,000, 000,000 pairwise



distances which need to be computed. For each frame it takes about a day to sort
the distances into a histogram which makes a total of about two to three weeks to

complete the analysis of the whole image.

Figure Bl shows the normalized distribution of distances in two different cells
obtained with both the pixel-based approach (Fig. and and the object-
based approach (Fig. and. It can be seen that the results are supportive
of each other since not only the behavior of the graphs is the same but also the

scale is almost the same.

Figure [ shows g(r), the pair correlation function of distances. It shows that
most pixels are within 1um from one another. It is interesting to note that in
Figure the scale for the different time points is nearly the same for the peak
and even better aferwards.
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Figure 4: Pair correlation function, g(r), for two different cells at different time

points.

Figure [ gives an impression of the accuracy of the average over frames. The
graphs on the left show how much the average differs from one single frame and the
right graph shows the development of the average for three different bins as more
and more frames are taken into account for computing the average. 23 frames were
considered in the analysis but as seen in the left graphs the average is stable after

around 10-15 frames as the graphs are well inside a 5% margin.



Conclusion

Mitochondria have been successfully identified with the described two step seg-
mentation process. The pixel-based approach to the analysis of organelles is in
principle more correct, and, indeed, shows superior results compared to the object-
based method, as seen in Figure 3. However, there is a large computational cost
associated with the pixel-based method. As the object-based method gives simi-
lar results (apart from the larger fluctuations), which method to use should in the
future be chosen based on a compromise between computational cost and precision.

Regardless, the appropriateness and limits of the object-based method has been
properly assessed. With this background, it is now possible to find a detailed view
of the effect of nanoparticles on mitochondria. In particular, the results can be
used as a firm theoretical basis to describe the effects on the cell (or lack thereof)
by the amine-modified and carboxylated PS-NPs, ultimately correlating this with

their different protein coronas (and/or its intracellular evolution).
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Figure 5: Frame averaged results are reliable within a 5% margin (dotted lines at
1.05 and 0.95) as seen in the right graph. It shows how the average changes for three
different bins when more frames are added into the average. The left graphs show
how the average is different with respect to one single frame. The images are all

from same cell as in Fig. and for two different time points, @ 20 mins and @

45 mins.



