

SCIENTIFIC REPORT

Guest: Dr. Sule ERTEN Ege Univ. Solar Energy Institute, Bornova-Izmir, TURKEY Visit Period: 14.01.2007-19.01.2007 Host: Prof. Dr. N. Serdar SARICIFTCI Johannes Kepler University Linz Institute for Organic Solar Cells Linz/ Austria

Extensive studies has been conducted on the construction organic solar cell systems by the use of dyes brought from Solar Energy Institute at Ege University. Molecular Structures which used to fabricate organic solar cell and bilayer heterojunction solar cell and the detailed analysis figures are shown below.

In addition following two seminars are given by myself at Johannes Kepler University, Linz Institute:

*Seminar in Linz, date: 19.02.07, Topic: Research activities at Solar Energy Institute on solar cells

*Seminar in Linz, date: 26.02.2007 Topic: The work plan of Dr. Sule Erten in Linz.

*Also I gave a lecture in winterschool on Organic Electronics- Interface Controlled and Functionalised Organic Films, 27 January-2 February 2007, Planneralm-Austria, National Research Network (NFN), "S. Erten, Th. B. Singh, N.S. Sariciftci, S. Icli-Air stable and soluble derivatives of perylene and naphthalene dimide for n-channel organic semiconductors",

1. Molecular structures of used materials

Dye sensitised solar cell and bilayer heterojunction solar cell were fabricated by using some molecular structures; Perylene tetracarboxylic dianhydride, Perylene dimide, Perylene bisbenzimidazole, Perylene monoimide monoanhydride, Perylene amidine imide, Naphthalene bisbenzimidazole, 7H-Benzimidazo[2,1-a]benz[de]isoquinoline-7-one-10-carboxylic acid, Naphthalene benzimidazole. Molecular structures of used materials are shown below.

Zinc Phthalocynanine

3,4,9,10-perylene tetracarboxylic dianhydride, PDA

N,N'-bis-methyl-3,4,9,10-perylene dimide, PDI

Perylene bis benzimidazole, BPP

Naphthalene bisbenzimidazole, NBI

7H-Benzimidazo[2,1-a]benz[de]isoquinoline-7-one-10-carboxylic acid, NBI_I

Phenanthrene benzimidazole comprising carboxyl group, PBI

4-bromo Naphthalene benzimidazole comprising carboxyl group, Br_NBI

Perylene monoimide monoanhydride, PMI

2. Absorption Spectra of used materials,

Figure 1. Absorption Spectrum of Naphthalene benzimidazole comprising carboxyl group, NBI_I (7H-Benzimidazo[2,1-a]benz[de]isoquinoline-7-one-10-carboxylic acid)

Figure 2. Absorption Spectrum of 3,4,9,10-perylene tetracarboxylic dianhydride (PDA)

Figure 3. Absorption Spectrum of Zinc Phthalocynanine

Figure 4. Absorption Spectrum of Perylene Dimide in CHCl₃

Figure 5. Absorption Spectrum of Perylene Dimide on film

Figure 6. Absorption Spectra of Perylene bisbenzimidazole

Figure 7. Absorption Spectrum of Naphthalene bisbenzimidazole

3. The results of the AFM studies are shown below,

Figure 8. AFM Picture of 3,4,9,10-perylene tetracarboxylic dianhydride, PDA

Figure 9. AFM Picture of PDI

Figure 10. AFM Picture of perylene bisbenzimidazole, BPP

Figure 11. AFM Picture of Naphthalene bisbenzimidazole, NBI

4. Device Structures fabricated are shown below,

The device structure of bilayer heterojunction solar cell are shown below. PDA, PDI, NBI, PB_2 were used as electron acceptors in bilayer heterojunction solar cell device.

Figure 12. Device Structure of ITO/PEDOT/ZnPc(60nm)/PDA(40nm)/Al

Dye sensitised solar cell fabrication was also tried for NBI_I, PBI, Br_NBI

Figure 13. Device structure of ITO/ nc-TiO₂/ Dye(NBI)/ I⁻/ I₃⁻/ Pt/ ITO

Another device structure which I have studied is $ITO/nc-TiO_2/Dye(Perylene monoimide monoanhydride)/P3HT/Au$

5. Device Results, I-V and IPCE Curves

Figure 14. I-V Curve of ITO/PEDOT/ZnPc(60nm)/PDA(40nm)/Al, V_{oc}= **0.26 V**, I_{sc}= **4.2 mA cm⁻²**, **FF**= **0.30**, η= **0.3 %**, **Device I**

Figure 15. IPCE spectrum for the device of ITO/PEDOT/ZnPc(60nm)/PDA(40nm)/Al

Figure 16. I-V Curve of ITO/PEDOT/ZnPc(60nm)/PDI(40nm)/Al, **Isc= 4.3 mA cm⁻²**, **Voc= 0.309 V**, **FF= 0.32**, η= **0.43 %**, **Device II**

Figure 17. IPCE Curve for the device of ITO/PEDOT/ZnPc(60nm)/PDI(40nm)/Al

Figure 18. I-V Curve of ITO/PEDOT/ZnPc(40nm)/ NBI (60 nm)/ /Al Isc [mA/cm²] : 2.16, Voc [mV] : 430, FF : 0.62, Efficiency [%] : 0,58, Device III

Figure 19. I-V curve of ITO/ nc-TiO₂/ Dye(PBI)/ I⁻/ I₃⁻/ Pt/ ITO , Isc= 0.59 mA/cm², Voc= 0.316 V, FF= 0.67, η = 0.12 %, Device IV

Figure 20. I-V Curve of ITO/ nc-TiO₂/ Dye(Br_NBI)/ I⁻/ I₃⁻/ Pt/ ITO, Isc= 1.02 mA/cm², Voc= 0.35 V, FF= 0.67, η = 0.24 %, Device V

Figure 21. I-V Curve of ITO/PEDOT/ZnPc(60nm)/ PBI_2(40 nm)/ /Al, Isc [mA/cm²] : 2.05, Voc [mV] : 500 , FF : 0.60, Efficiency [%] : 0.62, Device VI

Figure 22. I-V Curve of ITO/nc-TiO₂/ Dye(Perylene monoimide monoanhydride, PMI)/P3HT/Au Isc [mA/cm²] : 1, Voc [mV] : 200, FF : 0,56, Efficiency [%] : 0,11, Device VII

6. Table of summary of results

	Molecular	Isc [mA/cm ²]	Voc [mV]	FF	Efficiency [%]
	structures				
Device I	PDA	4.2	260	0.30	0.30
Device II	PDI	4.3	309	0.32	0.43
Device III	NBI	2.16	430	0.62	0.58
Device IV	PBI	0.59	316	0.67	0.12
Device V	Br_NBI	1.02	350	0.67	0.24
Device VI	PBI_2	2.05	500	0.60	0.62
Device VII	PMI	1.00	200	0.56	0.11

7. Mobility measurements of perylene and naphthalene dimide on PVA dielectric

N,N'-bis-butyl-1,4,5,8-naphthalene dimide; $\mu_e = 0.012 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ N,N'-bis-undecyl-3,4,9,10-perylene dimide; $\mu_e = 5.10^{-4} \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ N,N'-bis-nonyl-3,4,9,10-perylene dimide; $\mu_e = 3.10^{-5} \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ N,N'-bis-dehydroabietyl-3,4,9,10-perylene dimide; $\mu_e = 7.10^{-5} \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$, $\mu_h = 8.10^{-5} \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$

This study was supported by European Science Foundation.

Asist. Prof. Dr. Sule ERTEN Ege University, Solar Energy Institute 35100 Bornova, Izmir/ TURKEY