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I. DESCRIPTION OF THE WORK CARRIED OUT AND THE RESULTS
OBTAINED

In this project, we have theoretically investigated ultra-cold gases in disordered potentials.
The main aim was to study damped Bloch oscillations of Bose-Einstein condensates in
disordered optical lattices. In particular, we have addressed the important interplay of
disorder and interaction effects on the system dynamics. Our numerical results show, that
interactions can either enhance or diminish the damping rate, depending on the strength
of the nonlinearity. For strong nonlinearity, the damping rate is larger then in the single
particle case, due to effects of the so-called dynamically instability[1, 2]. In the regime of
weak nonlinearity, the damping rate may be significantly smaller then in the single particle
case due to an interaction induced dynamical screening of the disorder potential.

In continuation of my previous work in Barcelona (QUDEDIS Grant 1365), we have
expanded our numerical investigations of Bloch oscillations in the presence of disorder and
interactions. As a main result, we have moreover developed two analytical approaches to this
problem. They can serve to qualitatively explain the numerically observed damping rates.
This work was carried out in close collaboration with the theoretical research group of Prof.
Santos and the experimental research group of Profs. Ertmer/Arlt at Leibniz Universit
Hannover, and serves as a direct guide for the current experiments there.

In a second line of research, we have studied the introduction of a random field in a system
with continuous symmetry. A two-component Bose-Einstein condensate with a random
Raman coupling between the components served as a model system for our investigations.
In my previous stay in Barcelona (QUDEDIS Grant 1365), we have studied such systems in
1D and in 2D, and we have observed the emergence of order, if the random field breaks the
continuous symmetry. As a result of this Exchange Grant, our studies could be extended to
the 3D case, confirming our findings in lower dimensions.

The results of this work will be published in two papers. The results on random field
induced order, have already been submitted to Phsical Review Letters [3]. Our results on
damped Bloch oscillation will be submitted these days.

In the following we describe our work on random field induced order (section II.) and on

the dynamics of Bloch oscillations in disordered lattice potentials (section IIL.).



II. RANDOM FIELD INDUCED ORDER IN A TWO-COMPONENT
BOSE-EINSTEIN CONDENSATE

Systems with continuous symmetry do not exhibit long range order in two dimensions
for any finite temperature. This is a consequence of the famous Mermin-Wagner-Hohenberg
theorem [4]. As recently proposed [5], the introduction of a random field can lead to the
appearance of order, if the field breaks the continuous symmetry.

We have studied this effect with a two-component Bose-Einstein condensate and random
coupling between the components. This system can be experimentally realized by two in-
ternal atomic states and a random Raman coupling between them. The dynamics of the

condensate wavefunctions ® and ¥ is determined by the coupled equations

2
. Q
ho U = |——V2 4+ Vi + g1, |9 + g2 |®)| U 4+ =V
le 2
2m2 2

where V;, m; and g¢;; denote the respective external trapping potentials, atomic masses and
interaction coupling constants. The Raman coupling of the two components is governed by
the field Q(r) and is assumed to be resonant and real-valued in the equations above. In the
absence of the coupling field the system obeys a continuous symmetry, which is generated
by translations of the global phase difference of the two condensate wavefunctions.

We have numerically propagated 3D initial condensate wavefunctions according to the
coupled equations (1) in imaginary time to determine the ground state of the system.
In the abscence of disorder, the ground state is degenerated in respect to a shift of the
phase difference between the two components. However, the introduction of an arbitrar-
ily small coupling field €2 with spatial disordered profile and zero meanvalue lifts this
degeneracy and causes a phase difference, that fluctuates around +7/2. We have in-
vestigated this effect for a quasi-random, incommensurate sinusoidal field configuration
Uw,y,2) X Xyefoy5in(u/Ar) +sin(u/(1.71Ag))] with Agp = 4.68um. This coupling field
can be experimentally realized by a so-called optical super lattice configuration. In Figure 1
we show the phase difference of the two condensate wavefunctions for the case of a spherical
harmonic trap with frequency w = 2 x 30 Hz and N = 10° particles. The phase difference

indeed fluctuates around 7 /2 with very small amplitudes.
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FIG. 1: Phase difference 6 = ¢ — 1) between the condensate wavefunctions in the presence of a

random field of strength 7z ~ 5 x 1073 in the plane z = 0 um.

This effect can be understood by considering the energy functional of the coupled system:
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Let us denote the maximal amplitude of the Raman field by Q2. The density profile is only
barely effected by the Raman coupling, if the chemical potential x is much larger then the
coupling field ;1 >> h{2g. In this case, the effects of the random coupling on the ground state
can be understood by considering the interplay of the kinetic terms and the terms containing

the random field. The latter can be rewritten by inserting ¥ = |¥| e and ¥ = |®|e™:

Eyp = [ dr20(r) @]9 cos(6 - ). (3)

This term is minimized, if the sign of cos(¢ — 1) is opposite to the sign of Q(r). Since
< ©Q >= 0 and (r) is spatially rapidly varying, this can be achieved only at the cost of
kinetic energy. The total energy is in this case minimized by < cos(¢ — 1) >= 0 and very

small fluctuations around this value. This behaviour can be well observed in Figure 1.



Note, that this phase-ordering effect is an analogue to the random-field-induced-order
which has been recently discussed for lattice spin models [5]. However, in the case of quasi-
randomly coupled Bose-Einstein condensates, the effect turns out to be more pronounced.
We have also perfomed numerical simulations for purely random coupling fields. In these
cases, the phase difference fluctuates with much larger amplitude around +7/2. However,
the average over many realizations provides an average phase difference of strictly +7/2,
clearly showing the robustness of the effect. A detailed discussion of the differences between
quasi-random and purely random coupling fields or of the analogy to lattice spin models

exceeds the scope of this report. More details can be found in [3].

ITI. BLOCH OSCILLATIONS IN DISORDERED LATTICES POTENTIALS

We have investigated the use of ultra-cold gases to study the dynamics of Bloch os-
cillations in disordered periodic potentials. Bloch oscillations constitute one of the most
fundamental quantum phenomena for particles in periodic potentials. Under the influence
of a constant force the particle undergoes a coherent oscillatory motion instead of being
linearly accelerated [6]. The experimental observation of Bloch oscillations has already been
achieved in ultra-cold gases [7] by the help of accelerated optical lattices. Optical lattices
form perfect periodic potentials which are almost free from any kind of imperfections. Hence,
the life-time of Bloch oscillations in these structures is by orders of magnitudes larger then
for electrons in solid state samples. This makes ultra-cold gases very promising candidates
to experimentally study damping mechanisms and dynamics by introducing controllable dis-
order in the system. Our goal was to set the theoretical background for those investigations.
In particular, we have analyzed the interesting interplay between disorder and nonlinear
interactions that is of essential relevance for Bloch oscillations of Bose-Einstein condensates
in disordered lattice potentials. The work has been carried out in close collaboration with
Prof. Santos at the Institute of Theoretical Physics at Leibniz Universitdt Hannover and
serves as a direct guide to the experiments, which are currently performed in the group of
Profs. Ertmer/Arlt at the Institute of Quantum Optics at Leibniz Universitit Hannover.

Typical experimental investigation deal with condensates in 3D trap configurations, and
we have previously shown (see Grant Report 1365) that radial excitation play an important

role for the dynamics of Bloch oscillations in this regime. However, a good understanding of



the intriguing interplay between disorder and interactions may be obtained by considering a
quasi-1D situation. Let us assume that a condensate is so strongly confined by an harmonic
trap of frequency w, in the xy plane, that the chemical potential ; is much smaller then
the transverse level spacing u << hw,. Under these conditions, the 1D dynamics of the

condensate wave function ® along the z-axis, is given by the Gross-Pitaevskii-equation
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where m denotes the atomic mass, and g = 4washw, is the 1D coupling constant, with a,

the s-wave scattering length. V' (z) denotes an external potential of the form
V(2) = mw?2?/2 + s B, sin®(kz) — Fz + Vyis(2). (5)

i.e. a superposition of an axial harmonic trap with frequency w, a tilted potential with slope
F, a disorder potential Vy;,(2), and a lattice potential of periodicity d = 7/k, and depth s in
units of the recoil energy E, = h?k?/2m. The condensate ground state in the superimposed
harmonic and lattice potential serves as the initial state for our simulations of the dynamics.

Figure 2 shows the averaged position (z(t)) = [ dz ®*2® for a Rubidium condensate, with
w; =271 %200 Hz, d = 412.5 nm, s = 5 and F'd/E, = 0.05, for different particle numbers N,
axial trap frequencies w, and disorder depths. As disorder potential, we consider Gaussian
noise with correlation length L ~ 3.3 um. We define the disorder depth, VA as twice the
standard deviation from its mean value.

The upper panel of Figure 1 shows the averaged BEC position for fixed nonlinearity
but varrying disorder depth. It is evident, that the disorder introduces a clear damping of
the oscillation amplitudes, and we have previously discussed methods for the experimental
observation of this phenomenon (see Report 1365). Let us focus here on the interesting effects
of interactions on the damping dynamics, shown in the lower panel of Figure 1. In this plot,
the disorder depth is kept constant, and the nonlinearity is varried. For large nonlinearity
(see the curve for N = 700), a stronger damping then in the single particle case is observed.
This interaction-induced damping is related to the so-called dynamical instability [1, 2|.
This instability occurs when the quasi-momentum reaches the outer parts of the Brillouin
zone and small perturbations of the condensate wave function grow exponentially in time
[2]. This mechanism becomes predominant with growing nonlinearity, strongly damping the

Bloch oscillations.
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FIG. 2: Averaged position of a BEC undergoing BOs. Top frame: N = 350 particles, w = 7 Hz, and
disorder depths VA /E, = 0 (dashed), 0.02 (solid), and 0.04 (dotted). Bottom frame: Va/E, = 0.02
for N =1, w = 3.5 Hz (dotted), N = 350, w = 7 Hz (dashed) and N = 700, w = 10 Hz (solid).

The trap frequencies were adjusted to match the initial wavepacket widths.

On the contrary, the Bloch oscillation damping may be significantly reduced compared
to the single particle case for weak nonlinearity (see the curve for N = 350). This effect is
caused by an interaction-induced dynamical screening of the disorder and can be qualitatively
understood with a semi-classical description of the Bloch oscillations. In the regime of weak
nonlinearity, we can assume that the dynamics occurs within the lowest Bloch band, and
that the dynamical instability is irrelevant on the time-scales considered. Let us denote the
exact mean field potential obtained by solving the Gross-Pitaevskii equation by V,,((2,t) =
g|®(z,t)|?, and consider the effective single particle problem, for a particle in the lowest Bloch
band under the influence of V,,,¢(z,t), the tilting force F" and the disorder Vy;s(z). The single
particle Hamiltonian is given by H,sp = —2J cos(kd) — F2 4 Viis(2) + Vins (2, t). In the quasi-
momentum picture, k— k, and Z = i0/0k. We assume that the bare amplitude of the Bloch
oscillations, zgo is much smaller then the spatial spread of the initial wave function. This

in turn implies a very narrow initial momentum distribution, centered at kg, so that, in the



absence of disorder and nonlinearity (zero-order solution), Z(t) ~ 2(0)—zpo cos[(F't/h+ko)d].
The full Heisenberg equation for k reads dk/dt = F — (0Vy,/02)(2) — (OVis/02)(2,1). We
solve it pertubatively by inserting the zero order solution. Again, assuming a sharp initial
momentum distribution we obtain 2(t) ~ 2(0) — zpo cos{ £ + kod — & [§ dt'[(OVais/02)(2) —
(OVimg/0z)(2,t')]}. In order to calucalte the dephasing rate the latter expression has to
be averaged over the initial spread of 2(0). A reasonable estimate of the rate is 7> =~

h%—;({fé dt'[(0Vais /02)(2(0)) + (OVins/02)(2(0),¢)]}?). Note that, when acting alone, both
disorder and nonlinearity lead to the damping of the Bloch oscillations. However, when
acting together, they may compensate each other if the product of the time averaged forces
due to disorder and nonlinearity averaged over Z(0) is negative, qualitatively explaining the

dynamical screening of the disorder observed in the lower panel of Figure 2.

IV. FUTURE COLLABORATION

The research on Bloch oscillations in disordered optical lattices serves as a direct guide to
the experiments, which are currently performed at the Institute of Quantum Optics, Leibniz
Universitdt Hannover. This provides direct benefit to the researchers home institution at
Hannover. The cooperation between the research groups of the Profs. Santos/Ertmer/Arlt
at Leibniz Universitit Hannover and the host shall be continued. This future cooperation
will particularly address the interpretation of the experimental results on damped Bloch os-
cillations as well as subsequent experimental and theoretical research projects on disordered

quantum systems.

V. FURTHER COMMENTS

T.S. thanks Prof. Maciej Lewenstein and the Theoretical Quantum Optics group for hos-
pitality. Fruitful discussions with A. Niederberger, K. Sacha, J. Wehr, L. Sanchez-Palencia,
J. Arlt and L. Santos are acknowledged. The access to computer and office resources at the
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