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Background and Motivation 

The word ‘nano’ became a synonymous to progress our days. A large part of 
scientific community is dedicating its effort to investigation of the nano-world. Multiple 
applications based on architectures ordered at the scale down to nanometer exist 
today and many others are up-coming.1 
One of the important concerns of the contemporary society is the renewable energy 
sources. The fuel cell technology, available for about a half of century, is one of the 
most promising in terms of its environment friendly and high reliability aspects2. The 
proton-exchange membrane (PEM) is a critical part of a fuel cell. The basic function 
of membrane is to enable proton transport, while being simultaneously impermeable 
for electron and gas.  Recently, a new, biomimetic approach has been postulated3. 
The inspiration comes from water and ion-conductive nano-channels, e.g. aquaporin. 
The core concept of the project is to use different types of fillers (e.g. carbon 
nanotubes, CNT and titanate nanotubes, TNT) to improve the mechanical and better 
control the electrical properties of commercially available membranes. 
 
Project Outline 

The discovery of carbon nanotubes4 in the early nineties gave rise to a great deal of 
ideas how it can be used for technological purposes. The poly(composites) based on 
polymeric matrix filled with nanowires are promising for a large spectrum of 
applications.5 The fuel cell’s characteristics such as proton conductivity, electrical 
conductivity, thermal and mechanical strength and the current and power densities 
may be improved by these means. The design of new proton exchange membrane 
(PEM) and gas diffusive electrodes (GDE) for the hydrogen/oxygen fuel cell 
applications is in the scope of the present study.  

Exchange Benefits 

The hosting laboratory (Laboratory of Physics of Complex Matter (LPMC) at Ecole 
Polytechnique Fédérale de Lausanne) is a pole of excellence for the new electronic 
materials study. The main activities of the group are going from the synthesis of high 
purity nanotubes and nanowires to nanoparticles toxicity investigation. The use of 
state of the art facilities as well as benefiting of expertise in above mentioned fields 
are the purpose of present collaboration. 

The knowledge and skills in chemistry of materials of visitor (my-self) combining with 
the solid-state physics competencies of the hosting laboratory (LPMC) are the strike 
force we need to succeed in the present work. The nanofibers used in this study 
were produced exclusively at home-made facilities of LPMC so that there was no 



need for extra expenses and/or time. All measurements reported hereafter were 
performed using facilities of the following EPFL’s departments: 

• Institute of Condensed Matter Physics (ICMP) for Raman and FT-IR; 

• Interdisciplinary Centre for Electron Microscopy (CIME) for SEM and TEM; 

• Institute of Materials (IMX) for electrochemical impedance spectroscopy EIS. 

Results and Discussion    

The commercial perfluorosulfonic acid/PTFE copolymer poly(electrolyte) known by 
the commercial name of Nafion® was used as a scaffold in present work. In order to 
improve the mechanical and transport characteristic of the latter the carbon 
nanotubes (CNT) and titanate nanotubes (TNT) were employed. First, a simple 
model has been used. Poly(methyl methacrylate) was chosen as a cheap and readily 
available alternative to Nafion®. The infiltration and casting techniques were first 
worked out on this simple example and the resulted methodology was then 
transferred to the Nafion/CNT and Nafion/TNT cases.    

In order to compare the characteristics of prepared membranes with literature the 
following parameters need to be evaluated: 

• water content (XV, vol.-%) 
• water uptake (S, wt.-%) 
• hydration number (λ) 
• ionic exchange capacity (IEC, mmol SO3H g-1)  

All above mentioned values are relevant for the proton conductivity (σ, Scm‐1), i.e. one 
of the key parameter of ionic exchange membranes for fuel cell application 
(IEMFC).6 In case of a polymer with high water content, although the proton mobility 
remains high upon dilution, the acid concentration lowers and as a result the proton 
conductivity is eventually reduced. In order to estimate the interest for fuel cell 
application of newly designed membranes one has to reduce the potential swelling of 
a membrane on one hand and keep the hydration number as high as possible on 
another. 

The overall strategy was composed of the following steps: CNT growth, 
“hydrophylisation”, degasation, infiltration and casting. First, the multiwall carbon 
nanotubes (MWCNT) were grown by water assisted chemical vapor deposition 
(WACVD) technique7. The resulted samples were carpets of 1cm x 1 cm x 60-300 
µm made of CNT aligned perpendicularly to the substrate plane (Figure 1 and 2 for 
fine tube structure). 
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The dispersion quality is assumed to be casting conditions and pH sensitive. Further 
work is under way for elucidation of the preparation conditions most suitable for this 
type of membrane. 

Conclusions and Outline 

To the best of our knowledge it was the first time that Nafion® membrane with built-
in aligned CNT was prepared. The resulted material is highly anisotropic and 
additional investigations are in-progress in order to get the better knowledge of newly 
designed materials. This kind of membrane is assumed to be of particular interest for 
the diffusive gas electrode (DGE) design, thanks to its electrical and proton 
conductivities. 

The second type of composites we were investigating during this stay was 
Nafion/TNT membrane. As could be seen already, the actual water uptake of this 
kind of membrane is sensibly higher than for bare Nafion®. As was mentioned here 
above, the water uptake is directly related to the proton conductivity and so that we 
are assuming some positive results regarding this behavior. Moreover, the TNT are 
insulating, therefore this part of the work is aiming to contribute to the proton 
exchange membrane evolution. 

To conclude I would like to point out, that six months of exchange which I have 
benefited, thanks to the ESF exchange grant, were of great importance for my 
further scientific career. It gave me a better understanding for new electronic 
materials design logic and extra knowledge in the field I was not familiar with before. 
For instance use of electron conductive vs. insulating fillers (CNT vs. TNT) or 
microscopic techniques I have been trained.  We are actually performing the last 
measurements in order to submit a paper as soon as possible.    
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