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1. Purposeof thevisit

The visit was aimed at the further development of scientific collaboration with the
IPHT team involving in the number of European qubit projects. The main purpose of
the visit was the development of the new theoretical methods for the characterization
of superconducting qubits and for their applications as quantum detectors.

2. Thework carried out during thevisit

A) The interaction of a dissipative two level quantum system (TLS) with high and low
frequency excitation has been analyzed in the frame of dressed state approach. In the
frame of this approach the method of low frequency Rabi spectroscopy for the dissipative
TLS has been developed in application to the flux and charge qubits.

B) The possibility for the application of the flux qubit as a quantum limited
magnetometer has been analyzed.

3. Themain results obtained

A) Inthe frame of dressed state approach there have been developed a method for the
calculation of low frequency Rabi susceptibilities for dissipative TLS interacting
with the high frequency photon field. The Bloch equations in the basis of dressed
states for the reduced density matrix have been obtained from the rate equations
for the primary density matrix. The analytic solution to these Bloch equations has
been obtained for the case of a weak low frequency excitation. The solution
allows for the calculation of the low frequency susceptibilities of the system.

B) The voltage-to-flux and phase-to-flux transfer functions for the flux qubit have
been calculated, the main noise sources have been studied and it was shown that
the ultimate sensitivity of the flux qubit can be aslow as 10 7 F o/HZ"?, that is an
order of magnitude better than the best figures for the conventional SQUID
magnetometers.

4. Projected publications

During the visit two papers which are assumed to be published in refereeing journals
have been prepared. The papers are posted to e-print archive:



1. E. Ilichev and Ya S. Greenberg, Flux qubit as a sensor for a
magnetometer with quantum limited sengtivity, e-print archive cond-
mat/0608416. The paper is submitted for publication in Applied Physics
Letters.

2. Ya. S. Greenberg, Low frequency Rabi spectroscopy of dissipative two level
systems. The dressed state approach, e-print archive cond-mat/0609144.

The paper is now being prepared for the submitting to Physical Review B
for publication as a regular article.

These two preprints are attached to thereport.

5. Future collaboration with IPHT in the frame of qubit projectsis envisaged.

07. 09.2006 Y a, S. Greenberg
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We have analyzed the interaction of a dissipative two level quantum system (TLS) with high and
low frequency excitation. The interaction of TLS with high frequency excitation is considered in
the frame of dressed state approach. The level structure of the combined TLS-+high frequency field
system consists of manifolds the spacing between two levels in a given manyfold being equal to Rabi
frequency. If the low frequency signal is tuned to the Rabi frequency then the response of the system
exhibits an undamped low frequency oscillations, whose amplitude has a clear resonance at the Rabi
frequency with the width being dependent on the damping rates of the system. The method can
be useful for low-frequency Rabi spectroscopy in various physical systems which are described by
a two-level Hamiltonian, such as nuclei spins in NMR, double well quantum dots, superconducting

flux and charge qubits, etc.

PACS numbers: 74.50.4+r, 84.37.4q, 03.67.-a

I. INTRODUCTION

It is well known that under resonant irradiation a quan-
tum two-level system (TLS) can undergo coherent (Rabi)
oscillations. The frequency of these oscillations is propor-
tional to the amplitude of the resonant field! and is much
lower than the gap frequency of TLS. The effect is widely
used in molecular beam spectroscopy?, and in quantum
optics3.

During the last several years it has been proven exper-
imentally that Rabi spectroscopy can serve as a valuable
tool for the determination of relaxation times in solid-
state quantum mechanical two-level systems, qubits, to
be used for quantum information processing*. These
systems normally are strongly coupled to the environ-
ment, which results in the fast damping of Rabi oscil-
lations. It prevents the use of conventional continuous
measurements schemes for their detection, though the
special schemes for the detection of coherent oscillations
through a weak continuous measurement of a TLS were
proposed in®%7. That is why Rabi oscillations are mea-
sured with the pulse technique through the statistic of
switching events of the occupation probability between
two energy levels with excitation and readout being taken
at the gap frequency of TLS, which normally, lies in GHz
range®910,11,

Recent successful development of the method of low
frequency characterization of the flux qubits by a weak
continuous measurements in the radio frequency domain
(see review paper'? and references therein) allowed for
the first spectroscopic monitoring of Rabi oscillations
with the low-frequency tank circuit which has been tuned
to the Rabi frequency of the flux qubit!3. These experi-
ments stimulated theorists to study the different methods
for the detection of Rabi oscillations with the aid of low
frequency (compared to the energy gap between two lev-
els) electronic circuitry!415:16,

One of the methods for the detection of Rabi resonance
at low frequencies has been suggested in papers!™18. The

method consists in irradiating a TLS continuously by two
external sources. The first source with a frequency wy,
which is close to the energy gap between the two levels,
excites the low-frequency Rabi oscillations. Normally,
Rabi oscillations are damped out with a rate, which
is dependent on how strongly the system is coupled to
the environment. However, if a second low-frequency
source is applied simultaneously to TLS it responds with
persistent low frequency oscillations. The amplitude of
these low-frequency oscillations has a resonance at the
Rabi frequency with the width being dependent on the
damping rates of the system. In papers'”'® we analyzed
the Bloch equations for the quantities (oz), (ov), (ox),
where brackets denote the averaging over environmen-
tal degrees of freedom. Two external sources at high and
low frequency were incorporated in the structure of Bloch
equations from the very beginning. We showed analyt-
ically as well as by direct computer simulations of the
Bloch equations that the quantities (oz), (oy), (o x) ex-
hibit undamping oscillations with resonance at the Rabi
frequency.

The present paper differs from'™1® in that we study

the problem within a dressed state approach, which is
well known in quantum optics'®. We show that, as dis-
tinct from the quantum optics, in dissipative solid state
TLS there exists interaction which can induce the transi-
tions between the dressed Rabi levels. These transitions
result in the low frequency response of the system with
the resonance being at the Rabi frequency. We derive
the Bloch equations for the elements of reduced density
matrix and find the low frequency susceptibilities of the
coupled system TLS+photon field.

The paper is organized as follows. In Section IT we con-
sider TLS interacting with a one mode laser field which
is tuned to the gap of TLS. The structure of energy levels
of the global system (TLS+laser field) consists of mani-
folds the spacing between two levels in a given manyfold
being equal to Rabi frequency. We write down the wave
functions for these two levels and calculate the transi-



tion amplitudes between them which result from the low
frequency excitation. In Second III we define the den-
sity matrix in uncoupled basis and write down the phe-
nomenological rate equations for the elements of the den-
sity matrix. In Section IV the density matrix in the basis
of the dressed states is defined and the rate equations for
the element of the density matrix traced over the photon
number N are derived. In Section V we rewrite the rate
equations for the reduced density matrix in such a way
that their structure is similar to that of Bloch equations.
For the case of small high frequency detuning the steady
state solutions to these equations are found. In Section
VI the Bloch equations are modified to include the low
frequency excitation. The low frequency susceptibilities
for the coupled TLS+photon field system are found in
the section both for arbitrary and small high frequency
detuning.

II. INTERACTION OF TLS WITH A LASER
FIELD IN THE PICTURE OF DRESSED STATES

We start from Hamiltonian of two level system (TLS)
subjected to high frequency field:

A €
H= 50 +§az+ﬁw0(a+a+1/2)+Hint 1)

Here the first two terms describe an isolated TLS,
which can model a great variety of situations in physics
and chemistry: from a spin-(1/2) particle in a magnetic
field to superconducting flux and charge qubits?20. In
order to be exact we consider the TLS in (1) to describe
a double-well system where only the ground states of the
two wells are occupied, with A being the energy split-
ting of a symmetric (¢ = 0) TLS due to quantum tun-
nelling between two wells. The quantity € is the bias,
the external energy parameter which makes the system
asymmetric. The third term in (1) is the Hamiltonian of
the laser mode, a* and a being creation and annihilation
operators. The last term in (1) describes the interaction
of TLS with a laser field. This interaction modulates the
energy asymmetry between the two wells.

Hips = —0,F(a™ +a) (2)

Hamiltonian of TLS in (1) is written in the local-
ized state basis, i.e., in the basis of states localized in
each well. In terms of the eigenstates basis, which we
denote by upper-case subscripts for the Pauli matrices
ox,0y,0z, Hamiltonian (1) reads

A
H= 7502 + hwo(ata 4+ 1/2) + Hips 3)

where A; = V/AZ + 2 is the gap between two energy
states and

A € +
Hint = <A_€UX — A_EUZ> F(a -I-a) (4)

First we consider noninteracting system TLS+ laser field
which is described by Hamiltonian:

A
H0= 7“’02+ﬁw0(a+a+1/2) (5)

We denote as |a) and |b) the ground state and ex-
cited state wave functions of TLS, respectively with the
properties: ozla) = —|a), az|b) = |b), ox|a) = |b),
ox|b) = |a). The eigenfunctions of the photon field are
IN): at|N) = VN +1|N + 1), a|N) = V/N|N — 1).
The eigenfunctions of the noninteracting TLS+photon
system we denote as a tensor product |a, N) = |a) @ |N),
|b, N} = |b) ® |N). Up to a constant term the energies of
these states are:

A

Hyla,N) = —75 + fwo N (6)
A,

Hylb,N) = > + AwgN (7)

Let the photon frequency wy is close to the TLS frequency
A¢/h with a small detuning § = wg — A /A < wo, Ac/R,
where for definitiveness we assume § > 0. Then it is seen
from (6) and (7) that the energies of the states |a, N +1)
and |b, N) are close to each other: E,ni1 — Epn =
ho. The same is true for the pairs of states |a, N) and
|b, N —1); |a, N +2) and |b, N +1), and so on. Therefore,
the energy levels of noninteracting system TLS+photon
field is a ladder of manifolds (see Fig. 1).

Every manyfold is parameterized by a pair of states
with a small spacing between them, %d, and the distance
between neighbor manifolds is equal to photon energy,
hwy.

This ladder of manifolds is quite similar to the one for
atom-field interaction!®. However, a principal difference
is the structure of interaction Hamiltonian (4). In quan-
tum optics there is no ”longitudinal” interaction between
atom spin and a photon field which is proportional to oz.
It is the presence of this bias interaction in dissipative
TLS that leads to some effects which are unobservable in
quantum optics.

Consider now the modification of these levels that re-
sults from the interaction (4). We take a pair of the closed
spacing levels within a given manifold, |a, N}, |b, N —1).
The interaction (4) causes a transition between these lev-
els with the amplitude

AF
(@, N|Hintlb, N = 1) = ——V/N (8)
€

In addition, the interaction (4) connects the level |a, N')
to the levels of the neighbor manifolds, |b, N+1), |a, N +
1), |a, N — 1),. In the same way the level [b,N — 1) is
additionally connected to |a, N — 2), |b,N), |b,N — 2).
Therefore, the wave functions of the levels |a, N) and
|b, N — 1) are modified as follows:
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FIG. 1: (Color online). Levels of noninteracting TLS+photon
field system. The level spacing in a given manifold is Aé.
The spacing between neighbor manifolds is Awg. The red
(blue) arrows shows the H;,: induced transitions from the
state |b, N — 1) (|a, N)).

|aaN> - |15N> =A1|aaN>+BllbaN_ 1>+
Ci1|b,N +1) + Dy|a,N + 1) + Ey|a, N —1) (9)

b, N — 1) — |2, N) = Ag|a, N) + By|b, N — 1)+
C2|aaN_2>+D2|baN> +E2|baN_2> (10)

where we define the state with higher energy as |1, N).
The quantities C; and Cs are due to the ”transver-
sal” part of the interaction Hamiltonian, which is pro-
portional to ox, while the quantities Dy, Fy, Ds, and
E5 are due to its ”longitudinal part” which is propor-
tional to oz. All these quantities describe transition to
neighbor manifolds, therefore they are on the order of
F/uwg. It is worth noting that the last two terms in (9)
and (10) are peculiar to TLS and are absent in quantum

optics. In what follows we assume a weak excitation am-
plitude (F/wq < 1), therefore we leave in Egs. (9), (10)
only first two terms in their right hand sides:

|1, N) =sin6|a, N) + cos6|b, N — 1) (11)

|2, N} = —cosf|a, N) +sinb|b, N — 1) (12)

The form of Egs. (11) and (12) insures the normal-
ization and orthogonality of wave functions |1, N) and
|2, N'), which are eigenfunctions of Hamiltonian (3). Ac-
cordingly, the uncoupled states |a, N}, |b, N — 1) can be
expressed in terms of dressed states |1, N), |2, N):

|a, N) =sinA|1, N} — cos 6|2, N) (13)

|b, N — 1) = cosf|1,N) +sin 6|2, N) (14)

By using the standard quantum mechanical technique we
find eigenenergies and the angle #:

1 1
E. = 3 (Bja,ny + Eppn-1y) £ EhQR (15)

where upper (lower) sign corresponds to |1, N) (|2, N)).
The quantity Qg in (15) is the Rabi frequency?!

Op=4/0% + Q2 (16)

where 3 = AF/A., and we incorporated v/N in the
high frequency amplitude F'.

For the angle # we obtain tan20 = —Q,/0, where
0 < 20 < m, so that cos20 = —4/Qpg, cosfd =

1/2 1/2
% <1—QLR> ,sin9=% <1+%>

When the interaction is switched off (F' — 0) then, as
should be expected, the state |1, N') tends to |a, N}, and
the state |2, N) tends to |b, N — 1).

Therefore, with account for the interaction between
TLS and the photon field the level structure of a given
manifold looks like that shown in Fig. 2. The interaction
increases the energy gap between the states |a, N) and
|b, N —1). They say these states are dressed by the inter-
action. In what follows we call these two nearby dressed
states as Rabi levels.

Up to now the picture is quite similar to that known
from atom-photon interaction'®. However, a drastic
difference appears if we consider the excitation of the
dressed levels |1, N) and |2,N) by a signal whose fre-
quency is compared with Rabi frequency {1g. Such a low
frequency signal cannot change the number N of high fre-
quency photons, therefore, in quantum optics the transi-
tion between these two states are not allowed since the
atom dipole operator connects only the levels, say |a, N)
and |b, N}, which belong to the different manifolds. In
our language, the atom dipole operator is transversal: it
is proportional to ox.
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FIG. 2: The level structure of a dressed manifold. The un-
coupled states |a, N} and |b, N — 1) are converted by the in-
teraction between TLS and photon field into the two dressed
states |1, N) and |2, N).

In TLS the transitions between states |1, N) and |2, N)
are caused by ”longitudinal” term in interaction Hamil-
tonian, which is proportional to oz. Let us assume the
system (1) additionally interacts with a low frequency
signal G coswt, so that Hamiltonian (1) is added by the
term —o,G coswt, where the frequency w is on the order
of Rabi frequency Qg. In eigenbasis this low frequency
Hamiltonian is transformed as follows:

A
HEF — <A_UX - Aicrz> G coswt (17)
€ €

The transitions between the Rabi levels |1, N) and |2, N)
are caused by the second term in brackets of (17):

. €GQ1
AEQR

<15 NlH'LF|25 N> =

int

(18)

In what follows we show that these transitions result in
the undamped low frequency oscillations of the popula-
tions of initial levels |a) and |b) which can be detected by
a corresponding electronic circuitry.

III. RATE EQUATIONS FOR THE DENSITY
MATRIX IN UNCOUPLED BASIS

The elements of density matrix ¢ in the basis of un-
coupled levels |a, N) and |b, N) are defined as follows:

0aa = {(a,N|c|a,N)

ow = (b, Nlolb, N) (19)
<aaN|U|baN - 1>

Tab

The rate equations for the density matrix ¢ can be writ-
ten in the following form:

do,
.} = —Ubbrl + UaaFT (20)

dt

do
a9 _UaaFT + UbbFJ, (21)

dt

daab
dt
where I'| is the transition rate from the state |b, N) to
state |a,N) (relaxation rate), 'y is the transition rate
from the state |a, N) to state |b, N) (excitation rate),
the quantity I'y, is the rate of decoherence. These three
equations can be written in the operator form:

do
dt
where Hamiltonian of the uncoupled system Hj is given

in (5). The operator L is defined by its matrix elements
which follows from (20), (21) and (22):

= i00qp — 0aplo (22)

= —’—i[HoJ]-l-f (23)

(b, N|L|b, N) = —o3I"} + 0aals (24)
(a,N|L|a,N) = =044y + 0wl (25)
(¢, N|L|b,N — 1) = —og3T,, (26)

IV. RATE EQUATIONS FOR THE DENSITY
MATRIX IN THE BASIS OF RABI LEVELS |1, N)
AND |2, N)

The equation (23) can be generalized to include the
interaction between TLS and laser field:

d_a
dt
where Hamiltonian H is given in (3) with H;n: from (4).
Since the equation (27) is valid in any basis we can find

the elements of density matrix o over the basis of dressed
states:

= —2[H,0] +7 (27)

HLNPILN) _ o NIy @8)
dt
AN N _ (o, NiER2, N) (29)
dt
{1, Nol2, N)

= _iQR<15N|U|25N> + <15N|‘il2aN>

(30)
Below we define the reduced density matrix for two level
coupled system by tracing over the photon number N:

P11 = Z<15N|U|15N>
N

P22 = Z<25N|U|25N>
N

P12 = Z(LN|U|2;N>
N

P21 = Z<25N|U|15N> (31)

dt



Taking into account the matrix elements of L in the
dressed state basis, calculated in Appendix A, we obtain
the rate equations for the reduced density matrix p. The
rate equations for diagonal elements of p are as follows:

d
% = —Typ11 + Dapea + To(prz + p21)  (32)
d
% = —Tgpaz + T1p11 — To(prz + p21)  (33)

where

I'y = [cos20 (T} cos® @ — I'y sin® ) + 2T, sin? 0 cos® 0]
(34)

'y = [cos20 (T'y cos® @ — T'; sin® 0) + 2T, sin? 6 cos? 6]
(35)

Fo=sinfcosfcos20 ', — 'y — '] (36)

As is seen from (32) and (33), the total population is
constant: 4 (p11+p22) = 0. In our case the normalization
condition is P11 + P22 = 1.

For off diagonal elements of p we obtain the rate equa-
tions:

d
% = —i{lpp12+
p118infcos O [2I'1sin0 — 21| cos® O + I',c0s20] +
P22 8in 6 cos 0 [2FTcos29 -2 sin? 9 — chos29] —
p12 [28in® @ cos? O (T + ') + I'y (cos*0 + sin0)] —

p212sin® @cos® O[Ty + T') —Tp]+  (37)

Since p12 = pél, the rate equation for p2; is obtained
from (37) by hermitian conjugate.

V. BLOCH TYPE EQUATIONS FOR THE
DENSITY MATRIX

The rate equations can be further simplified if we in-
troduce new variables: p = p11 — pa22, p+ = pi12 + po1,
p— = p12 — p21. The rate equations for p, py, p_ are as
follows:

d 1
d_f =—p {1—11 cos® 20 + I, sin? 29} +
1
p+ |To — F} sin26 cos20 +T"_cos26 (38)
1
d 1
% =—iQgpp_+p {Fw — J—J sin 20 cos 20—

P+

1
o sin? 20 — T, cos® 29} +T_sin20 (39)
1

dp_
= —irps ~Typ- (40)
where 4- =1 + [, I =T —T.

If the damping is absent (all I'’s in (38), (39), (40)
are equal to zero) the quantity p is constant and p4, p_
oscillate with the Rabi frequency (1g. However, in the
presence of a damping these oscillations rapidly decay to
give the steady state solutions of Egs. (38), (39), (40)(see
Appendix B).

Here it is instructive to consider the case when the
high frequency detuning § is small compared to the Rabi
frequency at zero detuning (6 < ). In this limit
sin20 — 1, cos20 — —§/{}1 and we get from the Egs.
(38), (39), (40):

dp
L=_1 41
dpy . 1
T = i — = _ 42
o whp —ppr +T (42)
dp— )
5 = e —Tep- (43)

It is seen that the population p decays with the decoher-
ence rate I'p. This is due to the fact that in the dressed
state model the population of the level, say, |1, N) can
only be changed as a result of spontaneous transitions
to the levels |1,N — 1) and |2, N — 1) of the neighbor
manifold. The offdiagonal quantities p4+, p— undergo the

damping oscillation with the rate % <Ti1 +I'y ) provided
that Q7 > 1 <Ti1
tion of Eq. (38) for small detuning (¢ < 1), and those
for (42), (43) for 6 = 0 are as follows:

— F<p>. The nonzero steady state solu-

5 I_(I2+03)

©— _
p = (44)
(T
©_ T-Ty
Py =t (45)
MRS
rQ
PO =—i—L (46)
N+

As is seen from (44) p(© — 0 as & tends to zero that
means the equalization of the population of two levels

(p11=p22 = 3).



VI. EXCITATION OF RABI LEVELS BY A LOW
FREQUENCY SIGNAL

Here we find the response of the coupled TLS+photon
system to the external signal the frequency of which is of
the order of Rabi frequency (1g. The operator equation
for the density matrix o is similar to (27):

do
dt

int

= —2H+ B[] 0] +1 (47)
where Hamiltonian HZF is given in (17).

Since the low frequency signal cannot change the pho-
ton number N, the transitions between Rabi levels |1, N)
and |2.N) can be induced only by the second term in low
frequency Hamiltonian (17). The equations for p, pi
and p_ are obtained in the same way as Egs. (38), (39),
(40). The only difference is appearance of low frequency
terms in right hand sides of (38), (39), (40). Therefore,
taking into account the low frequency excitation, we get
for the reduced density matrix the following Bloch like
equations:

d 1
d_f =—p {1—11 cos® 20 + I, sin? 29} +
1
o+ [Ty — —} sin 26 cos 26+
Ty
p— (igsin 20 coswt) + I'_ cos20 (48)
dpy : 1
el —iQpp_ +p {Dp — 7_’1} sin 260 cos 26—
1
P+ | 7 sin®20 — T, cos® 29} +
Ty
p— (igcos20coswt) + I'_sin20 (49)
dp_
% = —iQpps — Lpp_ + 49 (p+ cos20 — psin 20) cos wt

(50)

( )_ 2€QR
XelW - D(w)T'pA

2€QR

Xo+ (w) m

where g = 2eG/A..

It is evident that the above equations exhibit oscil-
lation solutions in presence of the damping. If the ex-
citation amplitude is rather small we may obtain the
time dependent solutions of (48), (49), (50) as the small
time dependent corrections to steady state values, which
are given in Appendix B: p(t) = p©@ + p(M(t), py(t) =

PP+ 00, p- @) = P+ pVe).

The equations for these time dependent corrections are
as follows:

dpM 1 .
ek —pM [1_11 cos® 20 + T, sin? 29} +
1
pg) Ly, — 7_’1} sin 20 cos 26+
p(f') (igsin 20 coswt) (51)
dp(l) ) 1 1] .
d_‘t" = _meS) + p(l) {Fw — 1—11} sin 26 cos 20—
|1
ps_) [1—11 sin® 20 — T, cos® 29} +
P (igcos20coswt) (52)
dp
fi—t = —zQRpE:) - Rpp(,l)-l-

ig <p$) cos 20 — p(@ sin 29> coswt (53)

From these equations it is not difficult to find the linear
susceptibilities of the system (x,(w) = p(w)/G, ete.):

[psf) [(iw + Tp) [(iw + Az) sin 20 + B cos 26] + BT, cos 20 + 0% sin20] — BOQgp® sin 29] (54)

[p(f) [(iw + Ay) (iw + 2T,) c0820 + B (iw + I',) sin 20] — (iw + A1) T'pp(@ sin 29] (55)



X (w) = 725% X
- "Dl
Q—“’ [(iw + A1) (iw + A2) — B?
R
where

] <p$) cos 20 — p©@ sin 20> —

P00 [Bsin20 + (iw + A1) cos20]|  (56)

D(w) = (iw + T'y) [(iw + Ay) (iw + Ag) — B?] + Q% (iw + A4) (57)

In principle, the Egs. (54), (55), (56) solve our problem:
they give a response of the coupled system TLS+photon
field to a low frequency signal, which excites transitions
between the Rabi levels.

A. Small high frequency detuning

If the high frequency detuning ¢ is small compared
with the zero detuning Rabi frequency €y (6 <« €3), the
Egs. (51), (52), (53) can be substantially simplified. In
the limit 6 = 0 for Eq. (51) we get:

do®
i)i—t + Top® = igp® coswt (58)

Therefore, at exact resonance the quantity p(!) oscillates
without damping. However, in order to obtain oscillatory
behavior for p(l) and p(}) we have to keep in right hand
sides of (52), (53) the terms which are linear in 4. Thus,
in the limit of small § we get from (52), (53):

p()

dt

m, Lo
T L

) 1
- ng—p( ) coswt — o <F<p - Z_’1> oM (59)

+i1p"

()

+1iQ p(l) + Rpp(p = —ig <ip$) + p(0)> coswt
dt 95
(60)
The quantity p) in (59) is the solution of (58), which
does not depend on 4.
From the Egs. (58), (59), (60) we find the linear sus-
ceptibilities of the coupled system TLS+photon field for

the case of small high frequency detuning:

(0)
2 ip-
= — 61
Xo(@) Aciw+ Ty (61)
25 z5p(0) QQ

1
Xy (W) = = = —iw =2y + = (62)
A Q d(w) Ty Ty

25 6p(0) "
Ae Ty, (iw +T'yp) d(w)

1
Kiw + z_’> (fw+Ty) + 'y <iw + 2Ty —
1

Xp_ (W) =~

D) e

dw) = <zw+ > (iw+Ty) + OF (64)

where

The resonance nature of the response is evident from
(64).

B. Measurable quantities

Any quantity measurable in low frequency domain can
be expressed as a trace within a given manifold over the
photon numbers N. For example:

(oz)

=Tr(coz) =

Z<15N|UUZ|15N> + Z<25N|UUZ|25 N) =
N N
Z(la NlUll, N)(L Nlell, N>+
N
Z(la N|U|2a N><2a Nlell, N>+
N
Z<25 NlUll, N)(L N|UZ|25 N>+
N
Z<25N|U|25N><25N|UZ|25 N) =
N
pcos26 + pysin20  (65)

where we have used the definitions of density matrix (31)
and the dressed states (11), (12). The same result (Eq.
(65)) we would get if we took the trace over uncoupled
basis |a, N), |b, N).

For small amplitude G of low frequency excitation we
therefore, get:

(o7) = p© cos 29+p( ) sin 20+pM(t) cos 29+p$) (t)sin20
(66



where p()(¢) and pg)(t) can be expressed in terms of
real (') and imaginary (x”) parts of their correspond-
ing susceptibilities: p(M(t) = G (X'p coswt — x sin wt),
pg)(t) =G <X'p+ coswt — X, sinwt).

In the same way we get:

<d§TZ> =Tr <—%[H7UZ]U> =iQRsin29p,(t) (67)

For small amplitude G

d
(%) = i{lpsin 29p(£]) +i{lpsin 29p£1)(t) (68)
where p(})(t) =G <X;7 coswt — X} sinwt).

As for the quantities ox and oy, it is not difficult to
show that {(cx) = 0, and (oy) = 0 when averaging over
N within a given manifold. It means the absence of the
low frequency oscillations for these quantities2.

VII. CONCLUSION

In this paper in the frame of the dressed state approach
we have analyzed the interaction of a dissipative two level
quantum system with high and low frequency excitations.
We have found the response of the coupled TLS+photon

<15N|"L\|15N> =

field system to a signal whose frequency is on the order
of the Rabi frequency. In this case the response of the
system exhibits an undamped low frequency oscillations,
whose amplitude has a clear resonance at the Rabi fre-
quency with the width being dependent on the damping
rates of the system. The method can be useful for low-
frequency Rabi spectroscopy in various physical systems
which are described by a two-level Hamiltonian, such as
nuclei spins in NMR, double well quantum dots, super-
conducting flux and charge qubits, etc.
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VIII. APPENDIX

A. Calculation of matrix elements of L in dressed
state basis

With the aid of (11), (12) and (24), (25), (26) we obtain
for (1, N|L|1,N):

sin?0(a, N|L|a, N) + cos? 0(b, N — 1|L|b, N — 1) + sin  cos® [(a,N|f|b,N —1) + (b, N — 1|I]a, N)] =
sin® 0 [-T'1(a, N|o|a, N) + '} (b, N|o|b, N)] + cos® O[T, (b, N — 1|o|b, N — 1) + I't{a, N — 1|o|a, N — 1)] —

Tysinfcosf[{a,N|o|b,N — 1) + (b, N — 1|o|a, N)] (69)

Further transformation requires the substitution of uncoupled states in (69) with the dressed states by using Egs.

(13), (14). As a result we obtain:

<15N|"L\|15N> =

— (1,N|o|1,N) [Ty sin* 0 + T cos* @ + 2T, sin 0 cos® 0] — (2, N|o|2, N) sin® O cos® 0 [Ty + ') — 2T',] +
[(1,N|o|2,N) + (2,N|o|1, N)]sinf cos§ [['y sin? @ — '} cos® § + I'y, cos 2] + sin® 6 cos® 01" (1, N + 1|o|1, N + 1)+
sin? 0 cos? OT'+(1, N — 1|o|1, N — 1) +sin* 0T |(2, N + 1|02, N + 1) + cos* 0T1(2, N — 1|o|2,N — 1)+
[(1, N +1|s|2, N +1) + (2,N + 1|o|1,N + 1)] T"; sin® 0 cos 6
[(1,N —1|¢|2,N — 1) + (2,N — 1|o|1,N — 1)] 'y sinfcos® & (70)



By doing the same transformations we obtain:

<25N|"L\|25N> =

—(2,N|c|2,N) [T cos* @ + I' sin 6 + 2T, sin 0 cos® ] — (1, N|o|1, N)sin® O cos® 0 [Ty + ') — 2T',] +
[(1,N|o|2,N) + (2,N|o|1, N)]sinf cos§ [I'y cos® & — I} sin® § — I'y, cos 2] + sin® 6 cos® 01", (2, N + 1|o|2, N + 1)+
sin? 0 cos? OT'1(2, N — 1|o|2, N — 1) + cos* 0T | (1, N + 1|o|1, N + 1) +sin* 071 (1, N — 1|o|1, N — 1)+
[(1, N +1|s|2, N +1) + (2,N + 1|o|1,N + 1)] T"; cos® O sin §—
[(1,N —1|¢|2,N — 1) + (2,N — 1|o|1,N — 1)] 'y sin® O cos & (71)

<1’N|i|2aN> =

(1, N|o|1,N)sinf cos® [Ty sin® 6 — ' cos® @ + T'y, cos 20] + (2, N|o|2, N) sinf cos# [I'y cos® § — I} sin® § — T', cos 20] —
(1,N|o|2,N) [(T + T'}) cos® Osin? 6 + Ty, (cos* & +sin* 0)] — (2, N|o|1, N) sin®? 0 cos® 6 [I'y + 'y — 2T]
—sinfcosOT') [(1, N +1|o|1,N + 1) cos® 0 + (2, N + 1|o|2, N + 1) sin® 0] +
sinfcos 0Ty [(1, N — 1|o|1, N — 1)sin? 0 + (2, N — 1|o|2, N — 1) cos® 4] —
sin® @ cos® 0T [(1, N +1|o|2, N + 1) + (2, N + 1|o|1, N + 1)] -
sin? @ cos® 0Tt [(1, N — 1|¢|2, N — 1) + (2, N — 1|o|1, N — 1)]

B. Steady state solution of Bloch equations (38),
(39), (40)

The steady state solution p(®), pff), 29 of Bloch Egs.
(38), (39), (40) is found by equating of the left hand side
of these equations to zero (dp/dt = dpy /dt = dp_ /dt =
0). The result is as follows:

P =T [cos20 (AT, + Q%) + Bl,sin20] /D
(73)

pES) =—T_T,[A;5in20 + Bcos20] /D (74)

Q
PO = —iFfRPSf) (75)
©
where
1
A = T cos® 20 + T', sin? 20 (76)
1

(72)
1 .o 2
Ay = —sin”20 — T, cos” 20 (77)
Ty
1\ .
B= <F¢ - —> sin 26 cos 26 (78)
Ty

1 1
12 2 2 = il 40| —
D I'y [2 sin® 26 cos” 20 <F<p T1> + T cos

0% <% cos® 20 + T', sin? 9) (79)
1
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We propose to use the quantum properties of a superconducting flux qubit in the construction
of a magnetometer with quantum limited sensitivity. The main advantage of a flux qubit is that
its noise is rather low, and its transfer functions relative to the measured flux can be made to
be about 10mV/®q, which is an order of magnitude more than the best value for a conventional
SQUID magnetometer. We analyze here the voltage-to-flux, the phase-to-flux transfer functions and
the main noise sources. We show that the experimental characteristics of a flux qubit, obtained in
recent experiments, allow the use of a flux qubit as magnetometer with energy resolution close to

the Planck constant.

PACS numbers: 74.50.4+r, 84.37.4+q, 03.67.-a

Josephson-junction qubits are known to be candidates
for solid-state quantum computing circuits’. However,
owing to their unique quantum properties these devices
undoubtedly can be used as sensitive detectors of dif-
ferent physical quantities, such as quantum environmen-
tal noise? or low frequency fluctuations of the junction
critical current3. Here we propose to use a Josephson-
junction flux qubit as a sensitive detector of magnetic
flux. We show that the present state-of-art allows one
to obtain the energy sensitivity of such a detector in the
order of the Planck constant.

A flux qubit®®7 consists of three Josephson junctions
in a loop with very small inductance L, typically in the
pH range. This ensures an effective decoupling from the
environment. Two junctions have an equal critical cur-
rent I, and (effective) capacitance C, while those of the
third junction are slightly smaller: «l. and oC, with
0.5 < o < 1. At sufficiently low temperatures (typically
T ~ (10 ~ 30) mK) when &y, the external flux applied to
the qubit loop, is in the close vicinity of ®¢/2 ($g = h/2e
is the flux quantum, h is the Planck constant) the system
has two low-lying quantum states £_ and E;. The en-
ergy gap of the flux qubits, A/h = (E4+ —E_)/h is of the
order of several GHz. Below we assume kT << A (kp
is the Boltzmann constant), so that the qubit is definitely
in its ground state E_8.

For experimental characterization the flux qubit is in-
ductively coupled through a mutual inductance M to an
LC tank circuit with known inductance LT, capacitance
Cr, and quality Q (Fig. 1).

1)

g1
3K I? 0
2

FIG. 1: Flux qubit coupled to a tank.

The resonant characteristics of the tank circuit (fre-
quency, phase shift, etc.) are sensitive to the qubit in-
ductance and therefore to the external flux ®,.

It was shown in® that the amplitude v and the phase
x of the output signal V() = vcos(wt + x) are coupled
by the equations:

v® (1+4Q°3 () = Bt L3Q? (1)
tan y = 2Q¢(fx) , 2)

where I, is the amplitude of the driving current
(I (t) = I coswt), and w and wr are a driving frequency
and the resonant frequency of the tank circuit, respec-
tively.

It is worth noting that the the scheme in Fig. 1 and
Egs. (1), (2) are quite similar to those for a conventional
RF SQUID. The only difference is in the expression for a
flux-dependent frequency detuning &(f,). This depends
on the qubit parameters as®:

LI?
) = — K

(2)re,  ©

50 = (WT_“))/WTa fw — ‘Pw/q’o - %5 and

cos? ¢

1 27
fo = - d¢
(=) W/o [1 492 (fx + vsing)?

o @

with n = 2E3\/A and v = MIyQ/®o. The expression
for )\, which depends on «, I¢ and C is given in®.
Therefore, the main effect of the qubit-tank interac-
tion is a shift of the tank resonance. This results in a
dip in the voltage-to-flux and phase-to-flux characteris-

tics which have been confirmed by experiments!©.

Theoretical phase-to-flux x(fz) (PFC) and voltage-to-
flux (VFC) v(f,) dependencies at resonance w = wr, are
shown in Fig. 2 for three values of the amplitude of the
bias current Iy. The graphs hasve been calculated from
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FIG. 2: (Color online). Tank phase x (a) and tank voltage
V (b) vs bias flux f, for three values of bias current Io. The
gap frequency A/h = 2GHz.

Eqgs.(1), (2) for the following qubit-tank parameters: I, =
400 nA, o = 0.8, L = 40 pH, L = 50 nH, @ = 10000,
wr /27 = 100 MHz, A/h = 2GHz, and k = 10~2.

The advantage of a qubit magnetometer over a conven-
tional SQUID magnetometer is in the very steep depen-
dence of its VFC and PFC. In the flux locked loop opera-
tion of a magnetometer the working point is set at a fixed
value of ®x where the slope of VFC or PFC is maximum.
The output signal JV' is proportional to the change & x
of the measured flux. In principle two modes of detection
are possible: voltage mode, where 6V = V3 d®x, and the
phase mode, where 6V = ysd®x. The qubit transfer
functions o = vdx/ddx and Vo = Ov/dPx are shown
in Fig. 3 for the same qubit-tank parameters as those
used in Fig. 2. It is seen that qubit transfer functions
can exceed 10 mV/®q. This value should be compared
with 1 mV/®g, the best value obtained for a DC SQUID
with additional positive feedback!2.

The flux and energy sensitivity depend on the main
noise sources, which come from the low frequency fluc-
tuations of the junction critical current, Si,, and from
the voltage noise, Sy and the current noise, Sy of the
preamplifier, where Sy, Sy and St are the correspond-
ing spectral densities. The fluctuations of I¢ result in
the fluctuating flux in the qubit loop S<11>{ ? = LS’}?. For
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FIG. 3: (Color online). Phase-to-flux x+ (a) and voltage-to-
flux Vo (b) transfer functions for three values of bias current
Iy. The gap frequency A/h = 2GHz.

Ic = 400 nA, junction area A = 0.12um?, T = 0.1 K
we estimate for three-junction flux qubit (see Eq.18 in3)
Sé/?c ~ 2 x 10789 /Hz'/2 at 1 Hz. We will see that
this value is almost one order of magnitude smaller than
the noise from a preamplifier. Therefore, the self noise
of the qubit can be neglected. The contribution of the
voltage noise of the preamplifier to the flux resolution
referred to the input is SY = Sy /VZ or SY¥ = Sv/x2
depending on the detection mode. The current noise of
preamplifier which is related to its noise temperature Ty,
S; = 4kgTn/Rr, (Rr = wrLrQ), contributes via two
mechanisms. The first one comes from magnetic coupling
between the tank inductance and the inductance of the
qubit loop SI = M2Q?S;. This contribution cannot be
separated from the measured flux. The second mecha-
nism contributes through a voltage noise induced by the
current noise of the preamplifier across the dynamic resis-
tance of the tank SP = R%S8;/VZ (or SP = RLS51/:2),
where Rp = 8v/8I;. By combining these three mecha-
nisms we obtain for the flux sensitivity:

S<1>=M2Q2SI+Sv/V<§+R2DSI/V£ (5)

where Rp is approximately equal to Ry, the resistance of
unloaded tank. In the case of the phase mode detection
we should substitute in (5) xs for V.
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FIG. 4: (Color online). Flux sensitivity of qubit magnetome-
ter. Phase detection mode is shown by boxes and circles.
The stars and triangles are for the voltage detection. Two
straight lines show the level of S 1 for k= 0.01 (upper line)
and k = 0.005 (lower line).

For the estimation we take S‘l,/ ? = 0.2 nV/Hz"/2, and
Ty = 0.1K", with the other parameters being the same
as for Figs. 2, 3. The inspection of Eq. (5) shows that
the main contribution to the flux noise comes from the
first term:

4kpTNL

Sz =M?Q*Sr = K*Q
wT

(6)
This contribution does not depend on the position of the

. . o 1/2 _
working point and for our parameters it gives Sy'; =
2.8 x 10~ "dg /Hz'/2. The influence of the last two terms

in Eq. (5) depends on the position of the working point
and on the bias current amplitude I;. In general, the
contribution of these terms is nonnegligible. The total
flux noise dependence on the amplitude of bias current is
shown in Fig. 4. As seen from the figure phase detection
in general is more favorable than voltage detection. It
gives lower noise and is weakly sensitive to Iy. The flux
resolution can be improved by a decrease of S3,1 (see Eq.
(6)) upon optimization of k, @, wr, or L. However, it
does not necessarily lead to a decrease of the total noise,
since the transfer functions also depend on these param-
eters. (See, for example, the k = 005 curve in Fig. 4
for voltage detection). An increase of the bias frequency
wr can also give an improved flux resolution. However,
for the qubit to remain in the ground state the condition
wr << A/h should hold. We also made calculations
for wr = 200MHz with k=0.01, Q=1000, with other pa-
rameters being unchanged. We obtain at I, = 200pA
for the phase detection S’;ﬁ = 1.6 x 10 7dy/Hz/2,
which for L = 40pH corresponds to the energy sensi-
tivity € = S3/2L = 1.3 x 10733J/Hz=2h. These values
should be compared with those for conventional SQUIDs:
SY? ~ 1075dg/Hz'/2, e ~ 10~32] /Hz'3,

In summary, we have shown that a superconducting
flux qubit can be developed as a sensor of magnetic flux
with an energy sensitivity close to the Planck constant.
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