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Purpose of the visit

During my short visit of the Theoretical Physics Department at Loughborough University I continued working on the
the subject

Two particle element for magnetic memory

together with Prof. Kusmartsev and his PHD student Mike Forrester. The results are very encouraging and promising.
We made essential progress in the analytical and numerical derivation of phase diagrams, the calculation of the
corresponding hysteresis curves as well as the energy landscapes and their physical interpretation.

Short description about the project

We propose a stack of two isolated diskshape particles as an element for magnetic memory storage. The tunneling
across the device depends on the magnetic arrangement of the magnetic moments of the two magnetic particles and is
appreciably higher when the magnetic moments are aligned parallel to one another. Such a device is characterised by
a few stable states separated by large barriers. The switching between different states may be induced by an applied
spin-polarised current or magnetic field. We present a complete theoretical study of the magnetic phase diagrams
as a function of the field for arbitrary strength of the anisotropy and arbitrary directions of the external magnetic
field. We classify all possible magnetic hysteresis loops. We further discuss the stability of the information stored and
determine the critical magnetic switching fields.

For completeness I include the current version of our paper.

Future collaboration with the host institution

The long lasting collaboration Vienna-Loughborough with Prof. Kusmartsev is intended to be continued in the future.
Considering that the subject is of high actual interest, especially in the range of technical applications, we plan to do
further joint work in the field of magnetic nanoparticles and also in the field of arrays of Josephson junctions.
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We propose to use a stack of two or more isolated disk-shaped particles as an element for magnetic
memory, i.e. as a magnetic tunnel junction. Such a junction is characterised by a few stable states
separated by large energy barriers. The switching between the states may be induced by applying a
spin polarised current or a magnetic field. We have described the behaviour of the stable states and
energies of the stack in magnetic fields. In addition, we have described the magnetisations as well
as all possible types of hysteresis loops which such an element may have. We discuss the stability of
the information stored in the element and determine a critical magnetic field at which the switching
of the element arises.

PACS numbers:

INTRODUCTION

On one hand the emerging technology known as spintronics is going to make a step towards the use of spin degrees
of freedom. On the other the magnetic memory structures have a tendency to be made of smaller and smaller
elements. With the ever decreasing scales of these elements comes the necessity to find greater understanding of their
magnetisation properties, their responses to applied fields and their hysteretic characteristics. One form of magnetic
memory is magnetoresistive random access memory (MRAM) that uses the magnetic tunnel junction (MTJ) to store
information[9]. Within this element the MTJ stack consists of two ferromagnetic layers separated by a thin dielectric
barrier. Usually a magnetic polarization of one layer is fixed, while the other is used for information storage. MRAM
stores data by utilizing the magnetic polarity of a ferromagnetic layer[10]. The reading of information is performed
by measuring the current, which is determined by the rate of electron quantum tunnelling through the MTJ stack.
This is affected by the mutual polarity of the layers[11–13]. In other terms the MTJ resistance is measured across
the stack to determine the cell state. The free layer polarization is changeable: thus parallel or anti-parallel magnetic
moments give low or high resistances which can be interpreted as ”0” or ”1.” When the free and fixed layers have the
same orientation the resistance is lower.

The MRAM will be a non-volatile, power-saving, high-speed memory in the future[15]. In MRAM, thermal agitation
combined with either digit or word write line disturbances limit the operational field margin. This causes unexpected
switching and affects the stability of the memory states. The development of new structures is required to increase
the operational field margin for effective reading and writing in MRAM[16]. In most of the proposals, from Goto’s
model to the tri-layer model, the energy barriers become lower with an increase of the applied magnetic field. Thermal
agitation combined with field disturbances in the easy direction may cause unexpected switches.

The memory consists of an array of the MRAM cells. Increasing the density of an MRAM array is only possible
by decreasing the size of the MTJ. However with small sizes there are issues such as thermal instability of the cell
states[21]. As size decreases barrier energy drops as well and begins the onset of instability. The critical magnetic
field cannot simply be raised because this also generates an increased current flow. In some proposals one uses the
thermal heat itself to help select the cell for writing[18–20]. As a material approaches its Curie point, Hc drops, so that
less current is needed to write the information[17]. At cooler temperatures the energy potential well can be deeper.
This will lead to increased stability of the MRAM cell states and the stored information. We have to avoid thermal
instabilities by increasing barrier heights. In some proposals the free layer is in fact a Synthetic Antiferromagnetic
tri-layer stack (SAF)[18–20]. The magnetic moments of the top and bottom layers are nearly balanced. The direction
of magnetization of the ferromagnetic (FM) sense layer with respect to the pinned FM layer determines the resistance
state of the bit. The direction of the top FM layer and the sense FM layer are set by Savtchenko switching. Savtchenko
switching is named after the late Leonid Savtchenko at Motorola. Savtchenko switching is a method to toggle bit
between high and low resistance states. The SAF rotates its magnetic axis perpendicular to the applied field. The
bit is oriented at 45 degrees to the write lines. The 45 degree bits result in higher memory storage densities.

We propose to use small magnetic disk-shaped particles to build up a MTJ. A most simple construction of MTJ can
consist of two monodomain ferromagnets separated by an insulator or normal metal. The monodomain nanodots can
be made of NiZn with a diameter of about d 40 nm or supermalloy with a diameter d 100nm and thickness h 10nm.
The magnetism at small length scales has been a rapidly growing area of physics. Small magnetic particles and
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FIG. 1: a) Schematic structure of the work of the Magnetoresistive Access Memory (MRAM) cell consisting of magnetic tunnel
junction formed by two ferromagnetic and one insulating layers From the top and bottom from the memory cell there are to
programm lines which responsible for reading and writing information into the cell.

artificial thin-film structures that are based on ferromagnetic or anti-ferromagnetic layers separated by non-magnetic
spacers are the basic structural elements for an enormous scope of technical applications. Data storage and magnetic
sensing are just some of the areas in everyday life where they find uses[18? –20].

The formation of a MTJ through the giant magnetoresistant (GMR) effect in anti-ferromagnetically coupled multi-
layers is in a heart of many specific applications [1, 2]. On the other hand, nanomagnets can provide the basis for
experimental systems used to study fundamental phenomena in spintronics. Because of the hierarchy of competing
interactions these many particle systems display rather rich and interesting collective behaviour not found in bulk
crystalline magnets. Networks of elementary interacting small magnetic particles, smaller than the bulk domain size,
are potential future candidates for MRAM to store and to propagate information. The states are signalled by the
magnetization direction of single-domain magnetic particles coupled to their nearest neighbours through magnetostatic
interactions. New memory may consist of a network or a one-dimensional chain of circular or elliptic pairs of disk
shaped monodomain particles. These could form MTJs made from a commonly used magnetic supermalloy on a
single-crystal silicon substrate. Cowburn et al. have shown experimentally that circular nanomagnets made from
supermalloy behave like single domains if their diameter is less than 100nm and their thickness is not more than 10nm
[3]

NUMERICAL MODELLING

In a ferromagnetic material the atomic dipole moments are coupled strongly and tend to align themselves in
parallel. This produces a spontaneous magnetisation in materials of this classification. As Weiss [] postulated, a
material consists of many small regions which are each spontaneously magnetised. These regions are called domains.
The magnetic moment of the ferromagnet as a whole is dependent upon the contingent of domains in the specimen
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FIG. 2: Different elements for magnetic memory.

and as such can be taken as a sum of their moments. Generally the direction of each domain does not necessarily align
and the juxtaposition of individual domain moments may sum to an overall value of zero for certain configurations.
However, the application of a magnetic field adjusts the domain orientations and gives a net magnetisation. Usually
a specimen will consist of many domains, but as the size of the sample becomes smaller and smaller the propensity to
produce single domain particles increases. These single domain particles also emerge when a specimen is magnetised
to a level of saturation under the influence of a very large external field. Here bodies of nanometre scale dimensions
are examined with a view to highlighting the magnetic energies of such systems. Each particle is magnetised along
the length of its longest axis and geometry dictates that shape anisotropy has a major bearing upon the internal
properties. The particles investigated have the geometries of elliptical cylinders with a-semiaxis lengths of 70nm,
b-semiaxis lengths of 35nm, and thicknesses of 30nm. For a body of any particular shape and magnetisation M, the
energy of interaction in an applied field H0 is

EH = −µ0

∫
(M ·H0) dV (1)

The magnetostatic energy is given as,

Em =
µ0

2

∫
All Space

H2
mdV = −µ0

2

∫
Body

Hm ·MdV (2)

This means that the internal energy of a body is equal to the negative of its counterpart in the external space (as
the magnetisation is zero everywhere except inside the particle). With increasing applied magnetic field strength the
distribution of the magnetic flux density for two single domain iron particles is shown in Figure 2. As the field increases
the magnetic flux density of the particle with magnetization in the direction of the field is enhanced whilst the one
originally directed into the field will undergo rotation until its magnetisation becomes parallel with the direction of
the field. In the particle where the field is directed opposite to the magnetisation direction, shape anisotropy will
try to maintain the initial orientation. For small magnetic fields the shape effect has the greater influence and so
dominates. However, as the field is increased the shapes control waivers and at a critical level of applied field the
magnetisation experiences a complete flip to align itself with its competitor.

Taking the perspective that logic operations may be conducted by considering spins of plus and minus one, indicated
in Figure 3 by the positively and negatively directed arrows, the four system states within such a scheme are shown
in the aforementioned diagram. There exists an exact degeneracy of the antiferromagnetically ordered states, as is
seen in the lowest ground state energy of the diagram. There are a further two clear energy contours that exist for
pairs of particles that have the same vector alignment of their magnetisations. With no applied magnetic field there
are two points of magnetic energy and it is not until the field is switched on that the branching from the zero field
state occurs in the upper level. The interaction between the particles can be described by J0SiSi+1 where S is the
direction of the spin and J0 is the interaction energy. From Figure 4 the value of J0 is around 4eV .
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FIG. 3: The magnetic flux density distribution B as a function of magnetic field strength H. The field is applied along the
x-direction with 0, 104 and 2 x 105 A/m. The top particle is initially magnetised in the direction opposite to the field, whereas
the bottom one is aligned with it.

FIG. 4: The magnetic energy as a function of magnetic field strength. The arrows next to the curves are indicative of the
direction of the magnetisations in each particle in the system, i.e. there are four system orientations represented here. The
difference in the energies of the ground state and the excited level at a field strength equal to zero is about 8eV giving a value
of J0 of around 4eV .

2. THE MODEL SYSTEM

Consider a thin film sandwich structure with two ferromagnetic layers separated by an insulating layer. Depending
on the thickness of the spacer the two layers can be ferromagnetically or antiferromagnetically coupled. We start with
the Hamiltonian of the classic anisotropic Dirac-Heisenberg model

H = −J
∑

<i,j>

Si · Sj + K
N∑

i=1

(Si · ey)2 −H ·
N∑

i=1

Si (1)

where the spin operators are substituted by the unit vectors Si corresponding to the spin on site i. H is the uniform
magnetic field applied in a direction of the angle β with respect to the easy axis. The quantity K > 0 specifies
the strength of the uniaxial unisotropy, while the quantity J describes the strength of the nearest-neighbor exchange
interaction. We remark that the dipole-dipole interaction inside the particles is neclected, since for small spherical
particles this energy contribution is small compared with the contribution to the exchange interactions. The same
argument holds for the shape anisotropy such that the anisotropy contribution mainly stems from surface effects. The
locally energy minima of the system whose stabilities are crucial for hysteresis effects can be determined from the
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integration of the Landau Lifshitz Gilbert equation [4]

Ṡi = Si ×
∂H

∂Si
− αSi × (Si ×

∂H

∂Si
) (2)

with the relaxation parameter α, which is often known from experimental studies. Assuming that within each layer all
magnetic moments are ferromagnetically aligned but with an orientation that differs from layer to layer, we consider
the particles as elementary mono-domain units which take the shape of very flat spheres. Under these assumptions
the preferential orientations of the magnetizations are in-plane such that we can reduce our problem to the study
of one-dimensional chains of small magnetic particles. Introducing planar polar coordinates Si = (cos(φi), sin(φi)),
where the magnetization direction of particle i is described by the variable φi. the total energy of the system is given
by the two-particle Hamiltonian

H = −2Jcos(φ1 − φ2) +
K

2
(
sin2(φ1) + sin2(φ2)

)
−H (cos(φ1 − β) + cos(φ2 − β)) (3)

The quantity β specifies the angle of the external field with the easy axis, The dynamical behaviour of the particles
is governed by three competing energy terms, which can give rise to multistability and coexistence of various physical
phases. The first term defines the exchange energy, specified by nearest-neighbour interactions, while the next two
terms are due to the anisotropy. The last two terms specify the Zeeman energy. Since H and K can be scaled by J
we can choose |J | = 1. The set of Landau Lifshitz Gilbert equations collapses to the two coupled ordinary differential
equations

φ̇1 = −α
∂H

∂φ1
and φ̇2 = −α

∂H

∂φ2
(4)

Discretization of Eqs. (4) leads to a gradient descent procedure as commonly practised. Here, depending on the initial
condition, the system relaxes to the “closest” local or global minimum. According to the variational principle, the
necessary conditions for the existence of a local minimum of the Hamiltonian are the force equilibrium equations

∂E
∂φ1

= 2J sin(φ1 − φ2) + H sin (φ1 − β) + K sin(φ1)cos(φ1) = 0 (5)

and
∂E
∂φ2

= 2J sin(φ2 − φ1) + H sin (φ2 − β) + K sin(φ2)cos(φ2) = 0 (6)

In addition, the smallest eigenvalue λmin of the Hessian matrix, the Jacobi matrix of the derivatives of the energy
Eq.(3), has to be positive.

3. PHASE DIAGRAM FOR β = 0

For β = 0 the external magnetic field is parallel to the direction of the easy axis. We find two ferromagnetic phases,
F↑↑ and F↓↓ specified by the angles φ1 = φ2 = 0 and φ1 = φ2 = π, respectively. The corresponding energies are
EF = 2−2H and EF = 2+2H. The two ferromagnetic phases F↑↑ and F↓↓ are stable for H > 4−K and H < K−4,
respectively. We further find the anti-ferromagnetic phase AF characterized by the angles φ1 = 0 φ2 = π, and
φ1 = π φ2 = 0 with the corresponding constant energy EAF = −2. The antiferromagnetic phases are stable for
|H| <

√
K(4 + K). Eventually there exists a scissored phase SC specified by the angle relation φ1 = −φ2 with

φ1 = ArccosH/(4−K). Note that his phase is often referred to as the spin-flop phase [7]. The corresponding energy
takes the value ESC = (K − 2)−H2/(4−K).

This phase is stable for |H| < 4−K and |H| > (4−K)
√

K/(4 + K). Note that the scissored phase exists only for
K < 4. According to Fig. 3 we can have coexistence of two and more phases, respectively. Moreover, we have the
triple points P3 = (4

3 ,± 8
3 ), where three phases exist, while at P4 = (4, 0) we have coexistence of all four phases. These

critical points will be decisive in order to give a proper classification of all possible hysteresis loops. The evolution
of the two magnetization angles φ1 and φ2 as a function of the magnetic field for an anisotropy strength below the
critical point K = 4

3 is illustrated in Fig. 4.
We start with a sufficiently large positive field and drive the field slowly down. The first transition occurs, when

the F ↑↑ phase becomes unstable. (PF↑↑→SC = (1, 3)). This second order transition is a pitchfork bifurcation. Then
the SC phase becomes unstable and there is a discontinuous transition at PSC→AF = (1, 3

5

√
5). Then the AF phase

becomes unstable and we reenter the SC phase at PAF→SC = (1,−
√

5). Eventually the SC phase becomes unstable
at PSC→F↓↓ = (1,−3) and we enter continuously the complementary ferromagnetic phase F ↓↓.
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FIG. 5: A diagram of different states existing in a magnetic tunnel junction as a function of external magnetic field. The field
is applied in the plane parallel to ferromagnetic layers and the shape of the particles is associated with the parameter K. Large
positive value of K indicate that the monodomain particles are strongly elongated along X-direction.

In contrast to the evolution of the magnetization angles in Fig. 4 we restart with a negative large saturation and
drive the field slowly up to the positive saturation again. Thus, in contrast to Fig. 4, Fig. 5 is symmetric to the
axis of magnetization, since we drive the saturated field forth and back, giving rise to a closed hysteresis loop. The
evolution of the two magnetization angles for anisotropy strength K with 4

3 < K < 4 between the two critical points
is similar, however the system enters directly from the AF phase into the F↓↓ without passing through the SC phase.
In fact, this behavior is well known from experiments with antiferromagnetic materials.

Figure 4 shows the corresponding evolution of the hysteresis loop, which can also be extracted completely from our
phase diagram depicted in Fig. 3.

According to the phase diagram depicted in Fig. 3, for K > 4 , we only have transitions from the ferromagnetic
phase F ↑↑ to the complementary ferromagnetic F ↓↓ phase and vice versa.

We stress that a complete classification of all possible hysteresis curves is of fundamental importance in any kind
of technical application. Moreover, in the same manner, the qualitative behaviour of all possible magnetoresistance
curves can directly be extracted from the phase diagram depicted in Fig. 3.

4. Hysteresis Loops

Hysteresis loops are found that correspond directly to the previous phase diagram.
The orientation of the magnetisation is shown in Figures X, Y, and Z as the magnetic field is successively lowered

and heightened through negative and positive values. The field is directed in parallel to the easy axes of the single
domain particles. In Figure 3 there is a level of anisotropy, K/J > 4, where the phase transition between the
ferromagnetically ordered states ↑↑ and ↓↓ is seen. For one such value of K in Figure 3 the phase transition is mapped
out by the progression of linear arrows across the spectrum of H and is depicted by (a). In Figure X the curve with
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FIG. 6: The magnetisation angles of the two layers as a function of magnetic field and anisotropy parameter K=1

FIG. 7: Figure X The total magnetisation as a function of applied magnetic field strength. This hysteresis curve is illustrative
of the process highlighted in Fig 3 at point “a”. The arrows below the curve are those seen in Fig 3 at this point, marking the
transition between the flipped states of the ferromagnetic alignments.

respect to (a) in Fig 3 is shown. As the value H increases positively the system remains in the ↓↓ orientation until a
critical point where a jump is made to the ↑↑ state. Conversely, when the field is in turn lowered progressively the
critical level is reached at a point which mirrors that of the preceding evolution and a jump is made from ↑↑ to ↓↓.
At a level of K in Figure 3 there exists a more complicated phase distribution. For K at level (b) in the diagram
there is the addition of scissor states, e.g. ↙↘, and antiferromagnetically ordered ones. Traversing the line along
(b) the ferromagnetic ordering persists until a level of field where a scissors state begins to emerge. Going from the
low negative field upwards, the condition of the magnetisation of one particle is found at an angle φ1, whereas for
the other it is the direct inverse. Taking φ1 and φ2 to be 180 degrees from zero in the case of the ferromagnetic
state, the scissors state begins by splaying the magnetisation directions outward from an imaginary central axis. The
splaying begins moderately but as the field comes from the low negative strength upwards the overall angle between
the magnetisation vectors increases. This continues until a critical point where one particle aligns itself with the field
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and the other becomes the very antithesis of the first. This point is marked by a jump up to zero magnetisation in
Figure Y. Increasing the field out of the negative regime, through zero and up to a juncture in the magnetisation
characteristics where the moments align themselves ferromagnetically upwards in the positive field, the final jump in
the forward evolution is seen. This will happen when the field wins out against all other opposing factors and flips
both particles under its influence and into its orientation. Beginning the reduction of the field reversed the process in
a manner that gives a negative reflection of the magnetisation. The hysteresis curve in Figure Y is now attained.

FIG. 8: Figure Y The total magnetisation as a function of applied magnetic field strength. This hysteresis curve is illustrative
of the process highlighted in Fig 3 at point “b”. The arrows below the curve are those seen in Fig 3 at this point, marking the
transition between the differerent alignments.

With H equal to zero, and until a point in the field strength where anisotropy no longer holds sway, the system is
in an artificial antiferromagnetically ordered state with a moderate level of anisotropy K. The final hysteresis curve
described here, Figure Z, has the lowest level of uniaxial anisotropy and as such is the one with the smallest return
loops and greatest propensity for its moments to fluctuate. Beginning with low negative field strength the system
starts in its ferromagnetic alignment in harmony with the direction of the field. This saturated magnetisation state
ends earlier than for higher values of K and a scissors state propagates. This state lasts over a greater range of the
magnetic field in this softer material than in the other two hysteresis curves before jumping to the antiferromagnetic
distribution. Antiferromagnetism between the particles is maintained until the jump to a new scissors state is made
at another critical level of applied field strength. These new scissors begin to close as the field comes to dictate more
until they become parallel and the complete flip of both particles has arrived. Upon reversing the magnetic fields
cycle the hysteresis curve is born, showing smaller hysteresis and consequentially less energy loss than its predecessors.
The material featuring in this kind of curve is one that has a more rapid response to the field and a small remanence.
The particles magnetisations align opposite to one another with zero H due to the demagnetisation fields or rather
the fields arising from the magnetic poles at the edges of the elliptical particles.

PHASE DIAGRAM FOR β = π
4

The necessary condition for the existence of a local minimum of the Hamiltonian is

−2 sin(φ1 − φ2) + H cos
π

4
(sin (φ1)− cos(φ1)) + K sin(φ1)cos(φ1) = 0 (1)

+2 sin(φ1 − φ2) + H cos
π

4
(sin (φ2)− cos(φ2)) + K sin(φ2)cos(φ2) = 0 (2)

Moreover at the critical lines the determinant of the Hessian

Det

(
(
∂2H(φ)
∂φi∂φj

)|φ=φ∗

)
(3)

has to be zero. We find the two ferromagnetic phases, F↑↑ and F↓↓ specified by the angles

sin(φ1 −
π

4
) = − H

2K
(

√
1 + 2(

K

H
)2 − 1)
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FIG. 9: Figure Z The total magnetisation as a function of applied magnetic field strength. This hysteresis curve is illustrative
of the process highlighted in Fig 3 at point “c”. The arrows below the curve are those seen in Fig 3 at this point, marking the
transition between the magnetisation orientations

FIG. 10: Energies against magnetic field strength for (a) the evolution of “a”through figure 3, (b) the evolution of “b” through
figure 3, (c) the evolution of “c” through figure 3. In (a) The energies correspond to the ↑↑ state for the negative slope and ↓↓
state for the positive slope. In (b) the zero slope line (blue online) corresponds to the antiferromagnetic orientations, whilst
the parabola comes about due to the scissor states (green online). The energy dependence upon H in (c) is as in (b) except the
anisotropy parameter is 0.8 as opposed to 2.3. This parameter is taken to be 4.3 in (a).

φ2 = φ1 for H > −K/2, while for H < K/2 ....(symmetry!). with EF = .... The lines of stability of the ferromagnetic
phases are not analytic. They satisfy the nonlinear equation

4H6 + H4(15K2 − 64) + 4H2K2(3K2 − 16)− (4K6 − 128K4 + 1024K2) = 0

In the large H- and K-limit the phase boundaries of the two ferromagnetic phase approach K(H) = 2H and K(H) =
−2H, respectively. Note that the transitions from F↑↑ and F↑↑ to the scissored phase are always first order transitions,
where the two angles φ1 and φ2 change discontinously their magnetic directions. The phase diagram is depicted in
Fig...

The scissored phase which is spread almost over the whole plane is nonanalytic, except at the cusp of its boundary.
One finds Pc(2

√
2, 2) with the two critical angles φ1 = 0 and φ2 = π/2, respectively. In contrast to the ferromagnetic

transition this transition is of second order, where the two angles φ1 and φ2 undergo a backward bifurcation, when
we increase the strength of the magnetic field H.

K = αH critical line

CASE β = π
4
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FIG. 11: Phase diagram as function of the magnetic field Hi for β = Π
4

FIG. 12: Hysteresis loops for β = π/8 and K=2, and K=2.4

For β = π
4 we find α = 2 ( compare figure phase diagram) such that

K(H) = 2H

with the two angles φ1 = φ2 = 3π
4 . These two collinear angles do not depend on the field H. Note that here Eq.(1),

Eq.(2), and Eq.(3) are simultaneously satisfied. Consequently, the point Pc = (3π
4 , 3π

4 ) represents a critical stationary
point. (See figures below)
For K = 2H and β = π

4 the variational force equilibrium equations Eq.(1) and Eq.(2) yield two additional collinear
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FIG. 13: Phase digram for β = 22.5

FIG. 14: Phase digram for β = 20

FIG. 15: Hysteresis loops for β = 20 and K=2.2

solutions (Eq.3 is not satisfied), namely

φ = π
12 and φ = 17π

12

Also these two stationary points P ( π
12 , π

12 ) and P ( 17π
12 , 17π

12 ) do not depend on the field H. The corresponding
eigenvalues of the Hessian signal a relative minimum and a relative maximum. The relative minimum can be shown
to be stable only for H ≥ 8√

27
. (As to be expected) the critical point lies exactly between the relative minimum

Pmin( π
12 , π

12 ) and the relative maximum Pmax( 17π
12 , 17π

12 )
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FIG. 16: Energy contours as a function of magnetic field, taken when K = 2H. The angles of the particles are on the x and
y axes and the minima are depicted by blue dots, the maxima by red ones and the second order critical points by their yellow
counterparts. (a) H = 0, (b) H = 1, (c) H = 2,(d) H = 3 ,(e) H = 4 and (f) H = 10

other analytic cases: β = 0 and β = π
12

For β = 0 we have K(H) = H with the angles φ1 = φ2 = π

For β = π
12 we have K(H) = 1.62...H with the angles φ1 = φ2 = 2.57.. (φi = π + ..) is also a solution!

The angles are the solutions of the nonlinear equation

cos(
π

12
− φ) + sin(

π

12
) (cot(φ)− tan(φ)) = 0

and for α we have

α = csc(φ) sec(φ) sin(
π

12
− φ)

SUMMARY

We studied properties of two interacting magnetic particles subjected to exchange interaction J , anisotropy parameter
K and an external magnetic field H with an arbitrary angle β with respect to the easy axis. We further present a
complete theoretical study of magnetic phase diagrams as a function of the field for arbitrary strength of the anisotropy.
We classify all possible magnetic hysteresis loops and show the dependence of the corresponding magnetic moments
on the external field. These studies can give answers to the problem of finding adequate materials for practical
applications such as sensor, storing or recording devices. We remark that for larger number of particles the problem
of multistability is highly complex and can lead to fractal properties seen in all physical variables [8].

In conclusion, we have demonstrated the behavior of MTJ consisting of pair of diskshape monodomain particles
separating by an insulator. We have studied the stability of the MTJ states and a hysteresis loop both analytically and
numerically and made a detailed analysis of the possible hysteresys loops of the proposed MTJ. We have determined
a phase diagramm in the magnetic field -shape anisotropy plane. The numerical calculations are in good agreement
with our theoretical predictions.
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The proposed MTJ may entail a range of applications. Development of new magnetoelectronic devices are probable
and innovations in information processing and THz technology can be anticipated. The possible applications may
include models for MRAM constructions and logic gates. The novel magnetoelecronic devices may embrace memory
cells for storing binary data and even a construction for logic gates. Many interconnected transmission lines made
of MTJ can be designed into networks – nano MTJ networks. These considerations lead to future development of a
novel hardware and a new technology based on the nano- MTJs.
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