
Report to the European Science Foundation on the

III d ESF Summer Symposium
Neurotechnology: Applications and Implementation

August 25-26, 2001

Trieste, Italy

G. Indiveri1, R. Douglas1, A. Treves2

1Institute of Neuroinformatics, University of Zurich and ETH, Switzerland
2SISSA - Cognitive Neuroscience, Via Beirut 2-4, Trieste, Italy

November 29, 2001



Contents

1 Introduction 2
1.1 Goals and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Talk abstracts 5
2.1 Liquid State Machines: A new Framework for Computing with Spikes (Wolfgang Maass) . 5
2.2 Spikes (Probably) and Strange Hardware (Alan Murray ) . . . . . . . . . . . . . . . . . . 6
2.3 Capacity and Energy Cost of Information in Biological and Silicon Photoreceptors (Andreas

Andreou) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Neural Principles of Navigation: a model of the rat hippocampal system (Wulfram Gerstner) 7
2.5 NESP: a NEural Signal Processor (Eros Pasero ) . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 A DSP compatible circuit for temporal sequence learning: Classical conditioning in a be-
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Chapter 1

Introduction

The ESF symposium on “Neurotechnology: Applications and Implementation” was the third of a series of
meetings, held on the the Miramare campus of the International Centre for Theoretical Physics, in Trieste,
Italy. The symposium was held on August 25 and 26, just after the ending of the EU Advanced Course in
Computational Neuroscience, held in the same location.

The symposium was advertised on the World-Wide-Web (see URL:http://www.sissa.it/cns/www/esf01.htm
and on the most popular connectionist and computational neuroscience mailing lists. The first round of
invitations for this symposium was made by e-mail on April 8 (see Appendix B). Out of the 32 senior
researchers that we invited, only 8 declined. We also received 15 requests for participation (and funding)
from junior researchers.

All together about 60 participants attended the symposium, engaging in lively discussions during and
after each talk, and continuing through the breaks and the meals. The symposium budget actually paid full
accommodation and travel reimbursements for only about two thirds of them (24 invited guests, and 15
junior participants). In addition, students and participants of the EU course were also invited and several
did attend the symposium, which was made possible by including in the budget solely the extra nights for
those few that needed to extend their stay (these are included in the list of registered participants at the end).
Finally, a number of local participants from SISSA and ICTP joined in the exchanges, at no cost for the
symposium budget. The low total expenditure confirms the added value of holding the symposium not at
an isolated location, but in conjunction with the EU course, and within a scientific campus.

Next to the 21 oral presentations that were held during the the symposium (see Section 1.2), there were
demonstrations of VLSI neuromorphic demos and poster presentations.

1.1 Goals and Background

The aim of this symposium was to bring together the neuromorphic engineering and the computational
neuroscience communities. Particular care was given in choosing a balanced mix of researchers working on
topics that would complement each other. Specifically, we requested the invited speakers to discuss topics
that were relatedbothto computational neuroscienceandto hardware implementations (e.g.algorithms that
could be implemented in VLSI, analog electronic circuits that reproduce the behavior of the neural circuits
they model,etc.).

1.2 Program

On August 25, at the beginning of the symposium, the organizers gave a warm welcome to all the partic-
ipants. Giacomo Indiveri briefly described the schedule of the day, Alessandro Treves gave details on the
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logistics (e.g. about the coffee breaks, lunches, dinners,etc.) and Rodney Douglas gave a brief account of
the ESF summer symposium history and motivations, and acknowledged the European Science Foundation
for the support.

The schedule of the program is outlined Table 1.1.

Table 1.1: Symposium’s program

August 25
Session One: Spike based processing

9:30 - 10:00 Wolfgang Maass Liquid State Machines: A new Framework for Comput-
ing with Spikes

10:00 - 10:30 Alan Murray Spikes (probably) and Strange Hardware
10:30 - 11:00 Andreas Andreou Capacity and Energy Cost of Information in Biological

and Silicon Photoreceptors
Coffee Break

Session Two: Learning and HW implementations
11:30 - 12:00 Wulfram Gerstner Neural Principles of Navigation: a model of the Rat Hip-

pocamal System
12:00 - 12:30 Eros Pasero NESP: a NEural Signal Processor
Lunch Break
14:30 - 15:00 Florentin Worgotter A DSP compatible circuit for temporal sequence learn-

ing: Classical conditioning in a behaving robot.
15:00 - 15:30 Tor Sverre Lande Neuromorphic Medical Electronics
15:30 - 16:00 Stefano Fusi Long-Term Synaptic Plasticity in Analog VLSI without

Floating Gates
Coffee Break

Session Three: Neuromorphic Systems Demos
16:30 - 16:50 Tobi Delbr̈uck A physiologysts friend chip
16:50 - 17:10 J̈org Kramer An AER transient imager
17:10 - 17:30 Giacomo Indiveri An AER selective attention device
17:30 - 17:50 Vittorio Dante A communication infrastructure for AER devices
17:50 - 18:20 Shih-Chii Liu An AER multi-neuron chip
18:30 - 19:30 POSTER SESSION

August 26
Session Four: Learning and population codes

9:30 - 10:00 Maneesh Sahani Representation of uncertainty in population codes
10:00 - 10:30 Walter Senn Development of Direction Selective Cells in V1 through

Spike-Timing Dependent Synaptic Plasticity
10:30 - 11:00 Herbert Jaeger Fast Supervised Teaching for Recurrent Neural Net-

works: a Redundant Basis Approach
Coffee Break

Session Five: Cortical systems
11:30 - 12:00 Andras Lorincz Neocortical architecture carved with Ockham’s razor
12:00 - 12:30 Miguel Nicolelis Action from Thoughts: using High-Density MultiElec-

tode Recordings to Build a Neuroprosthetic Device for
Restoring Motor Function

continued on next page
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continued from previous page
Lunch Break
14:30 - 15:00 Leslie Smith Onsets and depressing synapses: a biologically inspired

attempt at auditory scene analysis.
15:00 - 15:30 Massimo Grattarola Bioartificial networks of neurons
15:30 - 16:00 Rodney Douglas Concluding remarks
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Chapter 2

Talk abstracts

The following are the summaries of the talks presented at the symposium. Next to the oral presentations,
live demos of neuromorphic systems were given during the third session of the symposium (see Program in
previous Section).

2.1 Liquid State Machines: A new Framework for Computing with
Spikes (Wolfgang Maass)

We propose a new model for real-time computation on spike trains in neural circuits.
This model is not based on stable internal states or attractors, but rather exploits the
natural transient dynamics of neural circuits as universal source of information about
past inputs. This approach is based on a rigorous computational model, the liquid state
machine. This model guarantees universal computational power under idealized condi-
tions, like the Turing machine, but for real-time computing on time-varying inputs with
fading memory (rather than for offline-computing on static inputs like the Turing ma-
chine). Based on this framework we have for the first time been able to carry out com-
plex real-time computations on spike trains with biologically realistic computer models
of neural microcircuits. This approach also suggests a radically new approach toward
neuromorphic engineering: Look for efficient hardware implementations of adaptive

liquid state machines in order to build devices for real-time processing of sensory inputs (joint work with
Henry Markram and Thomas Natschlaeger).

As a side result of this research project we have shown that a single layer of perceptrons (whose ”votes”
are counted to give a graded circuit output) can approximate any given continuous function. Furthermore
we have found (in joint work with Peter Auer and Harald Burgsteiner) a learning algorithm for these ar-
guably simplest instances of neural universal approximators, which -unlike backprop- requires just 2 bits
of communication between the global control and local processors that control individual weights. Further-
more it does not require the computation of high precision derivatives or analog error signals. Hence this
learning algorithm appears to be well-suited for implementation in adaptive neural VLSI.
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2.2 Spikes (Probably) and Strange Hardware (Alan Murray )

This talk will discuss the subset of ”neural” hardware techniques that use spiking, or
pulsed behavior. The methods behind pulsed VLSI will be reviewed and some exem-
plar circuits presented - for spike-generation, synaptic ”multiplication” and learning.
The potential and limitations of pulsed VLSI will be revisited in the context of the new
medium that is Deep-Sub-Micron (DSM) silicon. By 2010, transistors will be smaller
than 50nm - noise will be greatly amplified and irreducible. At present, no strategy
exists for reliable computation with such devices. Some preliminary work in (a) prob-
abilistic hardware and (b) spike-based learning will be discussed.

2.3 Capacity and Energy Cost of Information in Bio-
logical and Silicon Photoreceptors (Andreas Andreou)

We outline a theoretical framework to analyze information processing in bio-
logical sensory organs and in engineered microsystems. We employ the mathe-
matical tools of communication theory and model natural or synthetic physical
structures as micro-scale communication networks, studying them under phys-
ical constraints at two different levels of abstraction. At the functional level
we examine the operational and task specification, while at the implementation
level we examine the physical specification and realization. Both levels of ab-
straction are characterized by Shannon’s channel capacity, as determined by the
channel bandwidth, the signal power, and the noise power. The link between
the functional level and the physical level of abstraction is established through
models for transformations on the signal, physical constraints on the system,

and noise that degrades the signal. The models and noise are described from first principles when possible
and phenomenologically otherwise.

As a specific example, we present a comparative study of information capacity (in bits per second)
versus energy cost of information (in joules per bit) in a biological and in a silicon adaptive photoreceptor.
The communication channel model for each of the two systems is a cascade of linear band-limiting sections
followed by additive noise. We model the filters and the noise from first principles whenever possible
and phenomenologically otherwise. The parameters for the blowfly model are determined from biophysical
data available in the literature and the parameters of the silicon model are determined from our experimental
data.

This comparative study is a first step toward a fundamental and quantitative understanding of the trade-
offs between system performance and associated costs such as size, reliability and energy requirements for
natural and engineered sensory microsystems.

Work from: Capacity and Cost of Information in Biological and Silicon Photoreceptors. Abshire and
Andreou, Proceedings IEEE, July 2001.
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2.4 Neural Principles of Navigation: a model of the rat hippocampal
system (Wulfram Gerstner)

Neurons in the hippocampus of rats respond preferentially when the animal is at a spe-
cific location in the environment. Thus activity of each single neuron ‘represents’ a
certain place in the environment (place field). Two questions will be addressed in this
talk from a modeling point of view: First, how can we derive place fields from vi-
sual and proprioceptive information? We show that, after some suitable preprocessing,
unsupervised learning yields a stable representation of the environment by many over-
lapping place field. Second, how can place fields be used for navigation? We show that
the dense representation by place fields that results from exploration is an ideal basis
for reinforcement learning. A learned target position can be reached after 5-10 trials.
The model is demonstrated on a Khepera robot with video camera head.

2.5 NESP: a NEural Signal Processor (Eros Pasero )

Analog Artificial Neural Networks (ANNs) could be the core of an ”intelligent”
signal processor, with the today used digital processing replaced by a raw ”data
driven” methodology. Characteristic of this approach is: analog input/output:
signals don’t need A/D and D/A converters; speed: an analog system can be
faster than a digital or a mixed-mode one; effectiveness: ANNs already demon-
strated their power in many applications; low power: analog circuits can save
power. NESP is a NEural Signal Processor which offers the above characteris-
tics and is based on a traditional, available and not expensive double polysilicon
double metal commercial VLSI process.”

2.6 A DSP compatible circuit for temporal sequence learning: Clas-
sical conditioning in a behaving robot (Florentin Wörgötter)

Learning is an important feature of animal behavior, because it makes repeated
de-novo analysis of the sensorial input unnecessary. Accordingly also in many
artificial systems learning algorithms are utilized and artificial neural networks,
that can learn, have become of far reaching influence in physics and engineer-
ing. Recently systems have also been investigated that can learn temporally
extended input patterns (time-sequences, for a review see (Dayan and Abbott
2001). These systems consist of so-called ”spiking-units” which produce an
output-pulse (a ”spike”), like a real neuron, as soon as all summed inputs exceed
a certain threshold. Accordingly, the temporal patterns, which can be learned,

consist of sequences of such pulses. Commonly the temporal correlation between input and output deter-
mines the weight change at the network units in such systems: A weight will be strengthened only if the
input precedes the output by a short interval. If the order of input and output is reversed the weight will
decrease (Song et al. 2000). The size of the temporal window within which the pulse-sequence is evaluated
- the correlation window - is usually rather short, in order to assure a high temporal accuracy (Gerstner
et al. 1996). Therefore, learning of longer-lasting pulse-sequences requires additional mechanisms (such
as multiple delay lines (Dayan and Abbott 2001). In addition, these systems cannot very easily handle
additional (second or more) independent inputs and they will also fail when subjected to complex input
patterns. This, however, is the normal situation in almost all biological temporal learning situations. The
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most ubiquitous temporal learning known, ”classical conditioning”, takes place on rather long time scales
and normally requires two input stimuli, the unconditioned and the conditioned stimulus, which often arise
from different sensorial modalities. The unconditioned stimulus (food) is followed by an output event (sali-
vation). After learning the conditioned stimulus (bell), which always precedes the conditioned stimulus will
elicit the same event and, thus, the unconditioned stimulus can be interpreted as a predictor of the condi-
tioned stimulus (the sound of a bell predicts the feeding). In this presentation we will present a theoretical
framework for predictive (temporal) learning which does not require pulse-coding and, is, thus, able to han-
dle time-continuous input signals of arbitrary shape. A new learning rule is developed which utilizes the
temporal change (the derivative) of the output to modify the weights and we will show, that our approach
allows to analytically calculate the initial development of the weights. In addition, we will demonstrate that
this approach is directly compatible with modern DSP architectures and its performance is demonstrated by
means of a behaving robot.

[1] P. Dayan, & L. F. Abbott,Theoretical Neuroscience, (MIT Press, Cambridge MA, in press).
[2] S. Song, K. D. Miller, & L. F. Abbott (2000)Competitive Hebbian Learning Through Spike-Timing-Dependent

Synaptic PlasticityNature Neurosci. 3, 919-926.

2.7 Neuromorphic Medical Electronics (Tor Sverre Lande)

The merits of Neuromorphic engineering regarding applications in real products is
not very impressive. In spite of promising research results the only available com-
mercial product is the Logitech optical mouse. Even this one has only marginal
relations to a neuromorphic style of engineering. In my search for applications for
neuromorphic systems, implantable medical electronics showed up as potentially
interesting. Several neuromorphic features like low power, high computational ef-
ficiency and minimal size could be advantageous in these applications. The best
of all is that an increasing number of implantable electronics are nerve stimulators
where spikes are the ”natural language”

A key to both neuromorphic engineering and medical electronics is a funda-
mental understanding of information coding in the human nervous system. Recent
research has moved the timescale of our nerve system from milliseconds to mi-

croseconds (maybe even to nanoseconds). As a consequence we have to treat the temporal information with
much more respect.

In many medical electronic applications some sort of real time signal processing is required like filtering
and gain control. Instead of using traditional analog or digital signal processing strategies, several of these
tasks may be done directly on neuromorphic coded information (spikes). The hybrid nature of neuromorphic
codes (discrete value, continuous time) simplifies the circuits required and gives digital, programmable
control. An interesting feature of these systems is to mimic nature by using redundancy.

As an example a neuromorphic cochlea implant is presented. A major issue of this system is to code the
temporal information as good as possible. The main commercial vendors of cochlea implants have shown
significant interest in this approach.

A convenient way of handling neuromorphic systems is ”Address Event Representation” (AER) where
spikes are multiplexed on a digital bus. This way of ”neuromorphic communication” might be usable
as a general interface to implantable medical electronics. Due to the increased importance of temporal
information a trade-off between temporal errors and value errors (event loss due to collisions) should be
done. The weak arbitration scheme is trading event aging for bus crowding.

There is an increasing number of new applications for nerve stimulators and neuromorphic engineering
is well suited for these systems, so hopefully in due time we will see commercial medical neuromorphic
systems around.
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2.8 Long-Term Synaptic Plasticity in analog VLSI without Floating
Gates (Stefano Fusi)

Floating gates seem to be the natural candidate for implementing in aVLSI a dynami-
cal synapse with long term memory. Here we present an alternative solution based on
the theoretical observation that the performance of the network is not degraded if the
synapse can preserve only a discrete set of values on long time scales, provided that the
updating rule is stochastic. Stochastic learning solves the stability-plasticity problem in
many interesting situations but raises new issues related to the generation of the proper
noise driving the synaptic dynamics. However we show that a simple, fully determin-
istic, spike-driven synaptic device can make use of the network generated variability in
the neuronal activity to drive the required stochastic mechanism. Randomness emerges
naturally from the interaction of deterministic neurons, and no extra source of noise is
needed. Learning and forgetting rates of the network can be easily controlled by chang-

ing the statistics of the spike trains without changing any inherent parameter of the synaptic dynamics.

2.9 An AER transient imager (Jörg Kramer)

We present an electronic imaging sensor that responds to temporal transients in
the image, which typically correspond to moving contours. The transient response
depends on local contrast and is insensitive to global image brightness. The DC
response is suppressed, irrespective of image brightness. The transient signal is
computed and rectified within each sensor pixel in parallel, such that positive (ON)
and negative (OFF) transients appear at different output terminals. The output of the
pixel is a binary, rate-coded pulse train. The signals from the different pixels in the
sensing array are multiplexed onto a binary address bus, where each pulse is coded
as the address of the sending pixel. The data flow is controlled by the activity of the
different pixels rather than by an external clock. This coding of fast changes in the
image brightness as opposed to absolute brightness, together with activity-driven
multiplexing reduces the redundancy present in image data and allows for efficient

use of communication bandwidth, particularly for highly-correlated images and sparse moving features.
Furthermore, it facilitates object recognition, which typically requires contour extraction.

The presented version of the sensor has an array of 48 x 48 pixels and codes for ON and OFF signals of
each pixel with different addresses. The response threshold can be varied, such that the level of spontaneous
activity can be regulated or the DC response may be completely suppressed. Furthermore, a refractory
period determining the maximum spiking frequency of each pixel can be set. For long refractory periods
each pixel responds with a single spike to a moving image feature, which allows subsequent processing
stages to perform computations based on spike timing rather than on mean firing rates. The image sensor
has been used as a front end for a variety of biologically-inspired image processing systems, implementing
models for orientation tuning, motion sensing, attentional selection and cortical development.

2.10 Modeling Selective Attention using neuromorphic analog VLSI
devices (Giacomo Indiveri)

Selective attention is a mechanisms used to sequentially select and process salient subregions of the input
space, while suppressing inputs arriving from non-salient regions. We present a neuromorphic hardware
model of a selective attention mechanism implemented on a VLSI chip, using analog circuits. The chip
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makes use of a spike based representation for receiving input signals, transmitting output signals and for
shifting the selection of the attended input stimulus over time. It can be interfaced to neuromorphic sensors
and actuators, for implementing multi-chip selective attention systems. We describe the characteristics of
the circuits used in the architecture, and present experimental data measured from the system.

2.11 A communication infrastructure for AER devices (Vittorio Dante)

We describe a general-purpose board designed to interface the AER bus with the standard PCI bus. The
present implementation allows 1) to connect up to four sender AER chips and up to four receiver AER
chips, 2) to emulate a further, ’virtual’ AER sender chip, 3) to tap transactions on the AER bus, to attach
a time label to the AER events and to forward them to a PC via PCI (”monitor” function), 4) to imple-
ment a (programmable) connectivity pattern among the units in the AER chips (”mapping” function), 5)
to inject synthetic events in the AER bus, thereby emulating external, AER compliant inputs to the AER
chips (”sequencer” function). The board will be demonstrated through an experiment involving real-time
communication between neuromorphic chips (retina + attention chip).

2.12 Simple cortical cell modeling with aVLSI spiking neurons and
dynamic synapses (Shih-Chii Liu)

Multi-chip VLSI neuronal systems greatly shorten the simulation time of neuronal
networks. These programmable systems support the study of spike-based informa-
tion processing models. The modules in these systems communicate using an asyn-
chronous address-event representation (AER) protocol. Recently, we used such a
system to demonstrate both orientation-selective and direction-selective responses
of neurons mapped using simple cortical models. The system consisted of a sili-
con retina, a mapper module, and a multi-neuron chip. This chip has an array of
integrate-and-fire neurons together with simple current-integrating synapses. I will
describe a new multi-neuron chip that has additionally dynamic synapses. Using
spikes recorded from a lateral geniculate neuron of a cat as inputs to one of the
neurons on this chip, I show responses from a neuron mapped using a feedforward
model that utilizes the dynamics of a depressing excitatory synapse and a non-

depressing excitatory synapse together with an integrate-and-fire neuron to generate direction-selectivity.

2.13 Population Coding in the Face of Uncertainty (Maneesh Sahani)

Theoretical work on population coding in perceptual systems has, to date, focused primarily on the repre-
sentation of simple stimulus features. Beyond the first few stages of processing, however, the brain must
represent the products of perceptual inference rather than raw stimulus attributes. In many cases, noise and
the ill-posed nature of the perceptual problem lead to uncertainty in the inferred quantity. In other situations
– for example when multiple objects are present – the result of the inference is genuinely multi-valued.
Accurate perception requires that the uncertainty be represented and manipulated, and distinguished from
multiplicity; indeed, experiments suggest that observers do correctly handle uncertainty while making be-
havioral choices. How can a population of neurons encode the requisite information?

We consider a simple case in which an perceptual computation is trained by information drawn from a
different modality. Simple assumptions about the learning process lead to a natural proposal for a novel form
of population code. We examine this code, and show by the construction of an explicit decoding procedure
that it is sufficiently powerful to represent, and distinguish between, both uncertainty and multiplicity.
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2.14 Development of Direction Selective Cells in V1 through Spike-
Timing Dependent Synaptic Plasticity (Walter Senn)

Extracting the direction of motions is a basic element in visual scene analysis. To
assure a high performance in different environments one might want to adapt the
motion extraction capabilities to the statistics of the scenes. Here we show how
direction selectivity (DS) in the primary visual cortex could evolve in an activity-
dependent manner. Direction selective cells in the primary visual cortex are usually
explained by two groups of afferents with spatial offset and different delays. Alter-
natively, short-term synaptic depression causing a phase advance of the synaptic re-
sponse with respect to a sinusoidally modulated stimulus, could equally explain DS
(Chance et al., 1998). We show that the appropriate spatial arrangement and the ap-
propriate degree of synaptic depression can develop within a stochastic stimulation

scenario by means of a temporally asymmetric spike-timing dependent synaptic learning rule. Assuming
an initially symmetric arrangement of depressing afferents we show that stimulations with drifting gratings
of random speeds and random directions will break the symmetry and produce directional receptive fields.
Frequency tuning curves and subthreshold membrane potentials akin to those measured for non-directional
simple cells are thereby changed into those measured for directional cells. If synaptic down-regulation
dominates up-regulation the overall synaptic strength adapts in a self-organizing way such that eventually
the postsynaptic response for the non-preferred direction becomes subthreshold. To assure the stability of
the acquired DS within the stochastic input scenario, an additional learning threshold is required.

2.15 Fast Supervised Teaching for Recurrent Neural Networks: a
Redundant Basis Approach (Herbert Jaeger)

The talk introduces a constructive learning algorithm for the supervised training of
recurrent neural networks, which is characterized by two properties: (1) a large ”dy-
namical reservoir” recurrent neural network is used as redundant basis of complex
dynamics; this network is not changed by learning; (2) only the weights of connec-
tions from the ”dynamical reservoir” are learned. The basic mathematical idea is
sketched (”why it works”), and a number of examples are given. They demonstrate
a number of novel phenomena in recurrent networks; for instance, the training of
short-term memories with large memory spans (100 time step delayed recalls are
easily obtained), the training of infinite-duration memories (input-switchable mul-
tistate attractors), or the training of arbitrary periodic sequences (n-point attractor

learning).

2.16 Neocortical architecture carved with Ockham’s razor (Andras
Lorincz)

The goal of brain modeling is to describe the large body of neurophysiological, anatomical and behavioral
data from the smallest possible set of assumptions. Many different neural models have been proposed.
These models can be characterized by (i) the complexity of the set of assumptions they use and (ii) the
value of these assumptions, the predictive power of these models. Here, a model of the memory organiza-
tion of primates is presented, which can be derived from a single assumption: a conceivable resolution to
the homunculus fallacy. The derived model is able to capture the most significant properties provided by
experiments. Although the described architecture is strongly correlated with the entorhinal-hippocampal
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loop, we make an effort to project it to the neocortical organization, too. The theory behind the proposed
architecture leads us to the putative approach that we may gain a better understanding by considering that
anatomical and functional layers of the cortex may differ.

2.17 Onsets and depressing synapses: a biologically inspired attempt
at auditory scene analysis (Leslie Smith)

Finding the directions of sound sources in an environment with many competing
sound sources is a task which humans with normal hearing do easily, and without
conscious thought. We describe a binaural algorithm based on the neurobiology of
early hearing which appears to be able to do this task. It is based on the observations
that (i) animals have neurons which are very sensitive to onsets and (ii) onsets are
not damaged by reflections. The technique uses cochlear filtering, stochastic spik-
ing neurons, and a novel phase locked onset detector. We use the times of sound
onsets in cochlear bandpassed channels to group signals apparently from a single
sound source prior to using the phase locked onset detector to determine the inter-
aural time difference (ITD) between these clustered onsets. In this way, we can find

the ITD and hence the azimuthal bearing of a number of competing sound sources. We note that the algo-
rithms used exploit both stochastic neurons and depressing synapses: in addition, the technique is causal,
and could be re-implemented in hardware. It is thus a good candidate for neuromorphic implementation.

2.18 Neuroengineering : Bioartificial Networks of real neurons (Mas-
simo Grattarola)

Networks of neurons can be cultured and kept in healthy conditions for a long time in experimental in vitro
preparations. The characterization of the collective emerging properties of networks of neurons in more
and more taking advantages of the tools offered by microfabrication technologies, originally developed for
the microelectronic industries. Therefore a new area of research (”Neuroengineering”) is emerging at the
interface between neurobiology and microelectronics, where neuroscience research issues are approached
under brand new perspectives and by means of powerful new tools. A specific example of micro-hardware
is represented by the development of thin-film based planar and 3D arrays of substrate microelectrodes
(MEAs) to be in vitro coupled to populations of cultured neurons. MEAs technology offers the unique
opportunity to simultaneously monitor/stimulate the multi-site spatial and temporal electrophysiological
activity of cultured networks of neurons , on a time scale that is long enough (i.e. up to weeks) to identify
the emergence and development of synaptic connections and of spatial patterns of coordinated behavior.
Examples of the MEA approach, based on data present in the literature and on our own data, will be
presented.
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Chapter 3

Conclusions: Rodney Douglas

The presentations and discussions of the Workshop showed that there have been substantial advances to-
ward understanding neural computation. The engineers described and demonstrated novel aVLSI circuits,
and elementary systems that give confidence in a future generation of neuromorphic processors. The math-
ematicians described (with examples) dynamical systems that can be construed as a novel form of com-
putational engine, and the computer scientists offered novel architectures that could be used to interpret
natural computation. The neuroscientists, for their part, begin to frame their experiments toward answering
computational questions. Thus, it seems that the there is a strong move toward the kind of interdisciplinary
questions that the ESF Trieste workshop set out to encourage. What is also clear, is that the hard work lies
ahead: We need to move toward a understanding of natural computation that is not only descriptive, but
constructive in quality. Such constructive methods have been extraordinarily effective in progress of the
classical computer sciences, and are probably asine qua nonfor any future practical applications based on
natural computation and neurotechnologies. We hope that ESF will continue to support progress toward
these exciting, and economically significant, goals.
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8057

Switzerland

Stefano Fusi Institute of Physiology Buehlplatz 5, Bern, CH3012 Switzerland
Wulfram Gerstner Swiss Federal Institute of Technology Lausanne Laboratory of

Computational Neuroscience DI-LCN, Lausanne, 1015
Switzerland

Massimo Grattarola DIBE -Universita’ di Genova Via Opera Pia 11a, Genova,
16145

Italy

Giacomo Indiveri Institute of Neuroinformatics Wintherturerstr. 190, Zürich,
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dapest, H-1117

Hungary

Wolfgang Maass Institute for Theoretical Computer Science Technische Univer-
sität Graz Inffeldgasse 16b/1, Graz, A-8010

Austria

Alan Murray Dept. of Electronics & Electrical Eng. University of Edinburgh
Mayfield Rd.,Edinburgh, EH9 3JL

United Kingdom

continued on next page

14



continued from previous page
Miguel Nicolelis Department of Neurobiology 327E Bryan Research Building

Box 3209, Duke University Medical Center, Durham, NC
27710

USA

Klaus Obermayer
Eros Pasero Laboratorio di Neuronica Dip. Elettronica - Politecnico di

Torino c.so Duca d. Abruzzi 24, Torino, 10129
Italy

Maneesh Sahani Gatsby Computational Neuroscience Unit 17 Queen Square,
London, WC1N 3AR

United Kingdom

Walter Senn Institute of Physiology Buehlplatz 5, Bern, CH3012 Switzerland
Leslie Smith Dept of Computing Science and Mathematics University of Stir-

ling, Stirling, Scotland FK9 4LA
United Kingdom

Alessandro Treves SISSA- Cognitive Neuroscience Via Beirut 2-4, Trieste, I-
34014

Italy

Florentin Woergoetter Department of Psychology University of Stirling, Stirling, Scot-
land FK9 4LA

United Kingdom

Ausra Saudarglene Department of Computer Science, Vytautas Magnus University,
Donelaicio 58, 3000 Kaunas

Lithuania

Mario Costa Laboratorio di Neuronica Dip. Elettronica - Politecnico di
Torino c.so Duca d. Abruzzi 24, Torino, 10129

Italy

Michele Giuliano Institute of Physiology Buehlplatz 5, Bern, CH3012 Switzerland
Robert Legenstein Institute for Theoretical Computer Science Technische Univer-

sität Graz Inffeldgasse 16b/1, Graz, A-8010
Austria

Fritz Rincker Universiteit Utrecht, Heidelberglaan 8, 3584 CS Utrecht The Netherlands
Christo Panchev The Informatics Centre, SCET University of Sunderland, Sun-

derland SR6 0DD
United Kingdom

Luis Santos Dept. of Electronics and Computer Science - FCT, University
of Algarve, Campus de Gambelas, 8000 Faro

Portugal

Harry Erwin University of Sunderland, Sunderland SR6 0DD United Kingdom
G. Lacamera
Sadoyan Avetis Abel Yerevan State University, Alex Manoogian st. 1, Yerevan

375025
Armenia

Dyonyssios Theofilou Univ. of Antwerp Born-Bunge, Foundation Dept. of Neuorbiol-
ogy Universiteitsplein 1, B-2610 Antwerp

Belgium

Janaina Miranda Universidade Federal do Rio de Janeiro Instituto de Biofisica
Ibccf-Ccs-Ilha do Fundao 22000, Rio de Janeiro

Brazil
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dapest, H-1117

Hungary
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