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1) Purpose of the visit 

 
Visit Herbert Edelsbrunner's group at IST Vienna, investigate potential 

applications of computational group theory to topics in applied topology, work on a 
graduate-level textbook on Computational Homotopy.  

 
2) Description of the work carried out during the visit 

 
I worked on:  
(i) developing and implementing algorithms for computing the fundamental group 

of a finite regular CW-space and applying the algorithms to complements of protein 
backbone knots (joint work with Marian Mrozek et al.);  

(ii) applying computational homology algorithms to the classification of 
homotopy 2-types of order up to 128 (joint work with Le Van Luyen);  

(iii) writing a textbook on Computational Homotopy;  
(iv) attending the weekly geometry and topology seminar at the IST; 
(v) co-editing a special volume on applied and computational topology for the 

Springer journal "Applicable Algebra in Engineering, Communication and Computing". 
See following pages for further details 

    
 

3) Description of the main results obtained 
 
 See following pages for details 



 
4) Future collaboration with host institution (if applicable) 

 
 I plan to extend my stay at the IST to cover the period 4 November 2013 to 30 

June 2014 
 

5) Projected publications / articles resulting or to result from the grant (ESF 
must be acknowledged in publications resulting from the grantee’s work in 
relation with the grant) 

 
[1] "Computing fundamental groups from point clouds", P. Brendel, P. Dlotko, G. 

Ellis, M. Juda and M. Mrozek, 18 pages, to be submitted to AAECC. (Available from 
http://hamilton.nuigalway.ie/preprints/fundamental.pdf ) 

 
[2] "Homotopy 2-types of low order", G. Ellis and Le V.L., 9 pages, submitted to 

Experimental Mathematics. (Available from http://hamilton.nuigalway.ie/preprints/2t.pdf 
) 

 
[3] "Computational Homotopy", poster to be presented at the workshop on 

Topological Systems at the IMA in Minnesota, 3-7 March 2014. (Available from 
http://hamilton.nuigalway.ie/preprints/IMAposter.pdf ) 

 
[4] "Computational Homotopy", textbook, in preparation.  

 
6) Other comments (if any) 

 
I would like to thank the ESF for its support. 



2 Description of the work carried out during the visit

Since arriving at IST Austria on 4 November 2013 I have been working mainly on the following
topics:

1. Developing and implementing algorithms for computing the fundamental group of a finite
regular CW-space, applying the algorithms to complements of protein backbone knots and
other knots, and writing up the research as an article for publication. This is joint work with
Marian Mrozek (Krakow), who visited IST in December, and other members of his group.

2. Applying computational homology algorithms to the classification of homotopy 2-types of
order up to 128 and writing up the research for publication. This is joint work with Le Van
Luyen (Galway).

3. Writing the first two chapters of a textbook on Computational Homotopy and developing
code to provide suitable examples for the book.

4. Attending the weekly geometry and topology seminar run by Herbert Edelsbrunner’s group
at the IST.

5. Co-editing a special volume on applied and computational topology for the Springer journal
”Applicable Algebra in Engineering, Communication and Computing”.

3 Description of the main results obtained

3.1 Fundamental groups

The main theorem obtained is the following.

Theorem 1. For a knot K:S1 → R3 define G(K) = π1(R3 \K). The knot invariant

I [6,1,1](G(K)) = {Sab : S ≤ G(K), |G(K) : S| ≤ 6}

distinguishes, up to mirror image, between ambient isotopy classes of all prime knots that admit
planar diagrams with eleven or fewer crossings.

This theorem was obtained by developing and implementing software for computing fundamental
groups of regular CW-spaces, and for constructing regular CW-spaces that model knot comple-
ments. To describe this software we illustrate how it can be used to compute aperipheral system

π1(∂K) ∼= 〈a, b|aba−1b−1〉 → π1(R3 \K) ∼= 〈x, y|xyx = yxy〉
a 7→ x−2yx2y
b 7→ x

for the knot κ:S1 → R3 determined by the alpha carbon atoms in the backbone of the Ther-
mophilus protein.



gap> K:=ReadPDBfileAsPurePermutahedralComplex("1V2X.pdb");

Pure permutahedral complex of dimension 3.

gap> C:=ComplementOfPureComplex(K);

Pure permutahedral complex of dimension 3.

gap> C:=ZigZagContractedPureComplex(C);

Pure permutahedral complex of dimension 3.

gap> Y:=PermutahedralComplexToRegularCWComplex(C);;

Regular CW-space of dimension 3

gap> i:=BoundaryPairOfPureRegularCWComplex(Y);

Map of regular CW-spaces

gap> CriticalCellsOfRegularCWComplex(Source(i));

[ [ 2, 1 ], [ 2, 1331 ], [ 1, 9951 ], [ 1, 31415 ],

[ 0, 22495 ], [ 0, 25646 ] ]

gap> phi:=FundamentalGroup(i,22495);

[ f1, f2 ] -> [ f1^-3*f2*f1^2*f2*f1, f1 ]

gap> RelatorsOfFpGroup(Source(phi));

[ f1*f2^-1*f1^-1*f2 ]

gap> RelatorsOfFpGroup(Target(phi));

[ f1^-1*f2^-1*f1*f2*f1*f2^-1 ]

3.2 Classification of homotopy types

In this joint project with Le Van Luyen we initiated a classification of homotopy types of connected
CW -spaces X with πnX = 0 for n 6= 1, 2. The homotopy type of X is called a homotopy 2-type. It
is well-known that such a homotopy type can be modelled by a group homomorphism ∂:M → P
and group action (p,m) 7→ pm of P on M satisfying

1. ∂(pm) = p(∂m)p−1

2. ∂mm′ = mm′m−1

for p ∈ P,m,m′ ∈ M . Such a homomorphism and action constitute a crossed module. The
model is such that πnX ∼= πn(∂) for n = 1, 2 where one defines π1(∂) = P/im ∂ and π2(∂) =
ker ∂. A morphism of crossed modules φ∗: (∂:M → P ) → (∂′:M ′ → P ′) consists of two group
homomorphisms φ1:P → P ′, φ2:M → M ′ that satisfy ∂′φ2(m) = φ1∂(m), φ2(pm) = φ1pφ2(m)
for m,m′ ∈ M,p ∈ P . A morphism induces canonical homomorphisms πn(φ∗):πn(∂) → πn(∂′)
for n = 1, 2. The morphism φ∗ is said to be an isomorphism if φn is an isomorphism for n = 1, 2.
The morphism φ∗ is said to be a quasi-isomorphism if πn(φ∗) is an isomorphism for n = 1, 2.
Two crossed modules ∂, ∂′ are said to be quasi-isomorphic if there exists a sequence of quasi-
isomorphisms ∂ → ∂1 ← ∂2 → ∂3 ← · · · → ∂n ← ∂′ of arbitrary length n. We write ∂ ' ∂′ to
denote that ∂ is quasi-isomorphic to ∂′. Note that ' is an equivalence relation on crossed modules;
the corresponding equivalence classes are called quasi-isomorphism classes. We emphasize that two
crossed modules ∂, ∂′ could be quasi-isomorphic without the existence of any quasi-isomorphism
directly between ∂ and ∂′.
Mac Lane and Whitehead showed that there is a one-one correspondence between homotopy 2-
types and quasi-isomorphism classes of crossed modules. We define the order of a crossed module



∂:M → P to be the product |∂| = |M | × |P | of the orders of the groups M , P . We define the
order of a quasi-isomorphism class of crossed modules to be the least order of any crossed module
in the class. We define the order of a homotopy 2-type X to be the order of the corresponding
quasi-isomorphism class of crossed modules. A homotopy 2-type X can also be represented by the
fundamental group π1X, the π1X-module π2X and a cohomology class κ ∈ H3(π1X,π2X) known
as the Postnikov invariant. The Postnikov invariant κ is the trivial cohomology class if and only
if the homotopy 2-type can be represented by a crossed module ∂:M → P with ∂ = 0. In this
case we deem the homotopy 2-type, and also the quasi-isomorphism type, to be trivial.
In this project we developed two computer functions, both of which have been implemented by
the Le Van Luyen in the hap package for the computer algebra system gap. The first function
lists representatives for all the quasi-isomorphism classes of crossed modules of a given order
m ≤ 127, m 6= 32, 64, 81, 96. The second function inputs a user-defined crossed module (of order
possibly greater than 127) and tries to return numbers (m, k) that identify the least order m of
any quasi-isomorphic crossed module and a catalogue number k that uniquely identifies the quasi-
isomorphism class of the input; it certainly succeeds if the input is of order ≤ 127, 6= 32, 64, 81, 96.
We have used the implementation of these two functions, and related functions, to compile Table
1. The table uses the notation:
I2(m) = number of isomorphism classes of crossed modules of order m.
Q2(m) = number of homotopy 2-types of order m

= number of quasi-isomorphism classes of order m.
T2(m) = number of trivial homotopy 2-types of order m.

It is an easy exercise to see that I2(p) = Q2(p) = T2(p) = 2 for p a prime and so we omit prime
values of m from the table. It is also easy to show that for primes p < q we have I2(pq) =
Q2(pq) = T2(pq) = 6 when p divides q − 1 and I2(pq) = Q2(pq) = T2(pq) = 4 when p does not
divide q − 1 and so these values of m are also omitted from the table. (To establish the formulae
one uses that: the cyclic group of order p can act non-trivially on the cyclic group of order q
precisely when p divides q− 1; the only groups of order p or order pq with p not dividing q− 1 are
the cyclic groups; the only groups of order pq with p dividing q − 1 are the cyclic group and one
non-abelian semi-direct product of cyclic groups. ) The table suggests the general formulae:
I2(m)− 1 = Q2(m) = T2(m) = 5 for m = p2;
I2(m)− 4 = Q2(m) = T2(m) = 14 for m = p3, p ≥ 3;
I2(m)− 2 = Q2(m) = T2(m) = 18 for m = 4p, p ≥ 5, p ≡ 1 mod 4;
I2(m)− 2 = Q2(m) = T2(m) = 16 for m = 4p, p ≥ 5, p ≡ 3 mod 4;

and more complicated formulae for the cases m = q2p, q ≥ 3 and m = pqr with p, q, r distinct
primes. These formulae can be verified for a good range of m using the above mentioned computer
functions.

3.3 Textbook on computational homotopy

The first draft of the first two chapters of a textbook on Computational Homotopy were completed.
The table of contents is appended below.



m 1 4 8 9 12 16 18 20 24 25 27 28 30 32 36 40 42
I2(m) 1 6 18 6 20 62 22 20 73 6 18 18 20 251 78 72 26
Q2(m) 1 5 14 5 18 43 19 18 61 5 14 16 20 A 63 60 26
T2(m) 1 5 14 5 18 42 19 18 61 5 14 16 20 152 63 60 26

m 44 45 48 49 50 52 54 56 60 63 64 66 68 70 72
I2(m) 18 12 296 6 22 20 81 68 77 18 1276 20 20 20 325
Q2(m) 16 10 224 5 19 18 65 56 73 16 B 20 18 20 251
T2(m) 16 10 220 5 19 18 65 56 73 16 697 20 18 20 251

m 75 76 78 80 81 84 88 90 92 96 98 99 100 102 104
I2(m) 14 18 26 302 64 90 66 76 18 1446 22 12 87 20 72
Q2(m) 12 16 26 230 C 84 54 66 16 D 19 10 71 20 60
T2(m) 12 16 26 226 44 84 54 66 16 971 19 10 71 20 60

m 105 108 110 112 114 116 117 120 121 124 125 126 128
I2(m) 12 308 26 270 26 20 18 342 6 18 18 102 9120
Q2(m) 12 238 26 202 26 18 16 302 5 16 14 92 ?
T2(m) 12 238 26 198 26 18 16 302 5 16 14 92 4668

158 ≤ A ≤ 171, 727 ≤ B ≤ 831, 45 ≤ C ≤ 46, 996 ≤ D ≤ 1052

Table 1:
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