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1) Purpose of the visit

The  purpose  of  my  visit  to  the  University  of  Amsterdam,
concretely  the  Information  and Language Processing  Systems (ILPS)
research group,  was mainly  to help me to start  up my research on
developing  better  “learning  to  rank”  algorithms.  At  my  home
university, Czech Technical University in Prague, there is no expert or
research group in the field of Information Retrieval. The small research
group I am a part of has just begun to profile as such, hence the visit to
ILPS was a remarkable opportunity for me to find out how a big and
successful research group, which ILPS certainly is, works, and bring the
lessons learned and try to implement them in our group.

Another very important motivation for me was to hopefully start
up on a  joint  (long-term) project,  which  would  allow me to  keep in
touch and continue to do the research with ILPS. I am happy to write
down that this wish had come true. I can only wish the current findings
of our joint effort had turned out more positive.

2) Description of the work carried out during the visit

During the visit I was studying ensemble learning to rank models,
which were found to work the best in the field of learning to rank. I was
focusing mainly on LambdaMART, the current state-of-the-art learning



to rank algorithm, and was working on its implementation. I could have
used  an  existing  implementation,  such  as  the  one  in  RankLib
(http://sourceforge.net/p/lemur/wiki/RankLib/), which is implemented in
Java, but in order to be able to change things and understand all the
gory  details  of  it,  I  really  needed to  do the implementation  myself.
Since my language of choice is Python I found it very difficult to create
an efficient implementation. Having an efficient implementation is very
important because I am working with a dataset (which is provided by
Seznam.cz  the  Czech  commercial  search  engine)  with  hundred  of
thousands of queries and millions of documents, which can easily make
the training times to exceed several days. In the end it was not wasted
effort  and  the  implementation  is  now  available  as  an  open-source
project called RankPy (https://bitbucket.org/tunystom/rankpy). In terms
of efficiency it is a favorable competitor to RankLib.

After  finishing  the  baseline  implementation  I  started my  first
experiments  with  it.  LambdaMART  is  an  iterative  gradient  boosting
regression  tree  ensemble  model  and  as  such  it  has  myriad  of
parameters,  such  as  number  of  trees,  maximum  depth  of  trees,
learning  rate,  etc.  My  obvious  interest  was  to  see  how  robust  the
algorithm is to different parameters settings and how robust is against
label noise (which boosting algorithms usually fall victim to, and their
performance degrades with increasing noise). I also conducted several
experiments to compare the LambdaMART model, which is a list-wise
learning to rank model,  with different “point-wise” ensemble models
(either  classification  or  regression  models),  such  as  RandomForest,
MART, McRank. Figure 1. illustrates the training and test performances
of the listed models on the commercial dataset.

Figure 1: Performances of models (from left to right): LambdaMART, 
MART, McRank, Randof Forest regressor, Random Forest classifier. 

http://sourceforge.net/p/lemur/wiki/RankLib/
https://bitbucket.org/tunystom/rankpy


The robustness  against  noise in  labels  was tested by training
models  (in  this  case  MART  and  LambdaMART)  on  the  dataset  with
different amount of (uniform) noise added to the document relevance
labels. Figure 2 illustrates the results of evaluating the performances of
the “noised” models (models trained on noised data) on the original
dataset in terms of NDCG (with and without cutoff threshold). These
two models  were chosen because they are both from the family  of
gradient boosted tree models but apart from LambdaMART, MART is a
“simple”  regression  model  (the  target  variable  is  the  document
relevance). It may seem surprising that MART is beating LambdaMART
the more  noise  is  added to  the  relevance labels  (for  0% noise  the
models  reach similar  results  with  an insignificant  favor  (in  absolute
numbers) towards MART). My explanation is that for MART the noise in
documents  is  acting  independently,  but  for  LambdaMART,  a  noised
document influences all  the other documents  for  the same queries.
These  dependencies,  which  result  from  the  way  the  lambdas  in
LambdaMART are computed (put simply, lambda of a document is a
'cumulative' gradient of the loss function with respect to the output of
the ranker evaluated at the given document) make the noise to have
greater impact on the performance of the model.

The very surprising behaviour of LambdaMART is that it does not
overfit with the increasing number of trees. In this regard it has similar
behaviour  to  a  random forest  model.  Figure  3  below illustrates  the
typical training (in red) and validation (in blue) NDCG performance of
LambdaMART  during  training.  The  learning  curves  will  eventually

Figure 2: Influence of (uniform) label noise on performance.



flatten out, but even going extreme and training up to 10,000 trees I
was not observing any sign of overfitting, which would be detected by
dropping red line.

Very interesting is also to observe the influence of the learning
rate on the training process. Figure 4 is the same model that was used
to plot Figure 3, but the learning rate was decreased from 0.1 (typically
works the best – a rule of thumb value) down to 0.01.

From the progress at around 200 trees it seems like the model hit
a sort of local optima, but it was capable of “crawling out” of it. Certain
point of interest was to examine the importances of features (defined
in Breiman, Friedman, "Classification and regression trees", 1984) from
LambdaMART.  Figure 5 illustrates a typical  feature importances plot.
This plot reveals that more than 10% (there ~300 features) of features

Figure 3: LambdaMART learning curves.

Figure 4: LambdaMART learning curves



are never used and tests revealed that we can forget more than ½ of
the features without affecting the performance of the model.

Final piece of insight into working of the LambdaMART model was
to  see  what  portion  of  the  lambdas  (accumulated  gradients  of  the
pairwise loss function used by LambdaMART with respect to the output
of  the  ranker)  of  relevant  documents  were  made  from  interactions
(comparisons)  with  less  relevant  documents.  This  approach  was
adopted  from  Krysta  Svore  et  al,  “Learning  to  Rank  with  Multiple
Objective Functions”, WWW'11. Figure 6 illustrates the “influence” of
less relevant documents on the correct ranking of the most relevant
documents.

Figure 5: Feature importances found by LambdaMART

Figure 6: Lambda Influences of less relevant on most 
relevant documents.



This figure goes hand in hand with the learning curve plots depicted in
Figure 3. If we interpret the figure such that the points in the graph
depict  the  (average)  force  with  which  all  less  relevant  documents
(different colors show different relevance levels, maximum relevance
label is 5) push the most relevant documents up at each iteration of
boosting,  than  it  can  be  clearly  seen  from  the  Figure  3  that
LambdaMART's performance boost starts to stagnate after around 200
iterations. At the same moment the influences of all the less relevant
documents start to converge on its “limiting value”, see Figure 6. It is
also  very  important  to  note  that  the  influences  of  less  relevant
documents is still very high – clearly the LambdaMART benefits from
separating irrelevant documents from perfectly relevant ones (falling
red curve), i.e. putting relevant documents up in the list and irrelevant
documents down, but as we can see in Figure 6, the model completely
fails to mimic the same behaviour with documents of higher relevance.
Fixing this LambdaMART's “drawback” has become an appealing target
of  my  research,  since  the  mentioned  work  by  K.  Svore  have  not
provided satisfactory solution (according to me) and I have not found
any particular development in this line of thought. This issue reminds
me of a similar problem in classical boosting (not gradient boosting)
which Yoav Freund “solved” by his Boost by Majority algorithm (“noise-
resistent” AdaBoost). This does not easily translates into the context of
learning to rank, but certain similarities between the aforementioned
works can be found.

My original  ideas with using click logs and train LambdaMART
from pairwise preferences inferred from them (and clicks throughout
whole user sessions) have been postponed by my reluctance to start
working  on  a  problem  before  I  fully  understand  the  LambdaMART
model (and gradient boosting generally) and the issues associated with
learning from clicks.  The former  I  could  have done anywhere,  but  I
think there is no better place where to find out all about the problems
associated with inferring relevance from clicks than the ILPS research
group itself. The visit has armed me with a lot of knowledge I did not
posses,  and I  know that I  would have taken a wrong approach and
would come to wrong conclusions if I did not get it first.

I also spent substantial part of my visit working on a joint project,
which is  build  upon the hypothesis  that an ensemble of  specialized
rankers  –  each  ranker  is  trained  on  queries,  which  share  common
structure/intent  – can work better than one global  ranker.  The work
that was done before my visit supported the hypothesis, but similarly
to previous works on this topic (e.g. “Ranking Specialization for Web
Search: A Divide-and-Conquer Approach by Using Topical RankSVM” by
Bian J. et al, “Learning to Rank User Intent” by Giannopoulos et al.) it
was based on linear ranking models. Since I am focused on ensemble
models  it  was  theorized  whether  similar  results  would  be  acquired
when such models like LambdaMART were used.



The  query  clustering  methodology  is  very  similar  to  previous
works, a ranking model is trained for each query and the clustering is
made by using distance metric (or similarity) defined on the models.
This  is  very clear in case of  linear models,  in which case euclidean
distance  between  weight  vectors  of  the  rankers  are  used  as  the
(dis)similarity between the queries associated with the models. What is
not clear is how this can be done with a models based on trees. Here,
comes the ingenious idea not to use the rankers themselves, but the
way the models  rank the  queries.  I  will  withheld  the  details  of  our
approach for  future  publication,  but  it  can be said  that  Kendall  Tau
distance  metric  between rankings  is  used  as  the  clustering  metric.
Figure  7  depicts  the  distance  matrix,  rearranged  according  to  the
results  of  an  agglomerative  clustering  algorithm,  for  MSLR  dataset
(with filtered 10k queries), where the query models were linear models
trained via Duelling Bandit Gradient Descent.

The clusters  were validated such that  the performance of  the
models trained on (training) queries from the individual clusters were
compared with the performance of one global  model,  trained on all
(training) queries. The testing queries were selected out of the same
cluster. It turned out that the local (cluster) rankers are defeating the
global ranker, which has supported the original hypothesis. But there is
a huge if – in the model comparisons we are “cheating”, because in
real life we do not know which local ranker to use on a new test query,
and because the ensemble ranker is not only as good as its individual
rankers, but it also heavily depends on the quality of the membership
function  the  result  must  be  taken  just  as  a  small  step  towards
developing a better ensemble ranking model.

Figure 7: Query/models distance matrix. Each element correspond to a distance between 
associated queries/models. The black squares on the diagonal are typical for successful 
clustering.



As I mentioned earlier the clustering with linear models has been
already accomplished,  I  only  validated  the  results  and made a  few
adjustments to make the process less time-demanding. My job was to
take this idea and try to accomplish similar results with more complex
models, such as MART, LambdaMART, RandomForest. Sadly, I need to
state that the current results are unsatisfactory, i.e. based on them we
cannot refute nor support the clustering hypothesis. Figure 8 depicts
one out of many clusterings which came out for LambdaMART (all other
models that were tested came out with similar results).

The figure hardly shows presence of any clusters. Why it is the
case that the approach is not working with any of the more complex
models  was  not  yet  fully  identified.  It  seems  that  for  query  model
comparisons there is too much variance within the structure/ranking
behaviour of the ensemble models (compared to linear models), which
has not been successfully accounted for in cross-validation (which is
performed despite the fact that we are training the models on single
queries). Overfitting is not an answer since on a single query the linear
model overfits as easily as LambdaMART.  

Finally,  I  would  like  to  mention  I  was  also  attending  the
Information  Retrieval  courses  and  have  an  opportunity  to  give  a
presentation  about  LambdaMART and Learning to Rank.  I  have also
collaborated on a paper under the working name “A Comparison of
Retweet Prediction Approaches” with Hendra Bunyamin and Maarten
de Rijke, which is planned to be submitted on ASONAM 2015.

   

Figure 8: One out of many bad distance matrices made by clustering LambdaMART 
models for queries.



3) Description of the main results obtained

So far my individual work (described in the previous section) was
more  of  an exploratory  nature,  hence the results  worth  to  mention
according to me are the development of  the first  practically  usable
implementation  of  LambdaMART  in  Python.  The  implementation
through  its  visualization  capabilities  and  logged  information  is  very
practical to get insight into the inner workings of the model. Thanks to
these insights I was capable to see the “flaws” in the algorithm and
thanks to having implemented all the gory details myself I am more
than ready to make an experimental changes that I hypothesize could
make it work better.

The current results of the joint project (described in the previous
section) would deserve to turn out better but the work so far resulted
in  a  new framework  for  query  clustering which  is  now used to  run
further  experiments.  The  disappointment  that  the  clustering  is  not
working  for  LambdaMART  is  at  least  making  me  try  to  develop  a
method that would reveal whether or not the model (for its complexity)
can cluster queries in some sense “internally”.

4) Future collaboration with host institution (if applicable)

I am still working and hopefully will be cooperating in the future
with Masrour Zoghi, who was my contact person at the University of
Amsterdam.  The joint  project  was  described  in  the  Section  2  –  the
ultimate  goal  of  the  project  is  to  devise  an  ensemble  of  query
specialized  rankers,  which  would  work  significantly  better  than  one
single ranking model. Current search engines are usually running on
the latter,  i.e.  have a  single  ranking model  and does not  take into
account the different nature of various queries. Hence there lies the
potential  to  make  a  practical  impact  on  the  field  of  information
retrieval if our efforts succeed.

5) Projected publications / articles resulting or to result from the grant  (ESF
must be acknowledged in publications resulting from the grantee’s work in
relation with the grant)

No publication from my own work neither from the joint project
have been submitted yet, but it is  certainly planned. I  am currently
working on a broad technical report summarizing my findings and work
done  during  my visit.  I  certainly  acknowledge  ESF's  support  in  any
publication that will results from the work I did during my stay at the
University of Amsterdam. As for the joint project, I am not the leading
person behind it (Masrour Zoghi is), but as a major collaborator I can
make sure that the acknowledgement will be part of the publication,
which I can refer to as “Query Specialized Clustering”.

6) Other comments (if any)



I  feel  that  I  need  to  express  my  deep  gratitude  to  professor
Maarten  de  Rijke,  the  leader  of  the  Information  and  Language
Processing  Systems  (ILPS)  research  group  at  the  University  of
Amsterdam, for letting me stay and be for a short while a part of an
amazing collective of smart and motivating people. I would especially
like to thank to Masrour Zoghi who has become my colleague and who
has played the role of my supervisor during the visit. I am very grateful
that I can continue to do the research with him and discuss with him all
the crazy ideas that are constantly coming on my mind.

To make long comment short, the stay at ILPS for me was a very
eye  opening  and  mind  broadening  experience,  which  will  certainly
influence the way I do my work. For giving me this opportunity I need
to send my kindest regards to ESF as well because without its financial
support it would not be possible for me.


