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Purpose of the visit was continuation of on-going study into the modeling of 3D electromagnetic field scattering by thin dielectric disks. More broadly I implied electrically resistive (ER) and dielectric disks whose thickness is much smaller than the disk radius and the free space wavelength and the skin-layer depth (in the ER disk case). The interest in this study is explained by numerous applications of these canonically shaped objects. Besides of traditional applications in the printed disk antennas with ER disks, thin dielectric disks are widely adopted to model broad leaves of deciduous trees and thus used to estimate characteristics of forest channel such as backscattering, attenuation, etc. Disk resonators are ubiquitous building blocks of various mm-wave, sub-mm-wave and THz systems; they are very attractive if supporting the whispering-gallery modes remarkable for very high values of Q-factors. Especially important is accurate analysis of disks illuminated with the quasioptical beams. Moreover, single uniform disk scattering problem is a starting point for the simulation of the scattering by more complicated varying-thickness disks, i.e. mm-wave and THz lenses, and finite collections of uniform disks, for instance, Yagi-Uda like arrays.

For the study I use the method of spectral integral equations combined with analytical regularization technique. This is a mathematically accurate method that enables one to reduce each problem to a set of coupled Fredholm second kind integral equations (IEs). The favorable features of this-kind equations guarantee existence and uniqueness of their exact solutions, and also the convergence to them of numerical solutions when the size of discretized IEs gets larger.
During the stay in Rennes, I focused my attention on the scattering by a single uniform dielectric disk. I have studied radiation patterns and total radiated and absorbed (for the lossy disks) powers of a given source in the presence of the disk. As a source, I consider elementary electric and magnetic dipoles located near the disk, coaxial rings of electric and magnetic currents, and a complex Huygens element, which is a combination of crossed electric and magnetic dipoles. The last one is known as a good model of the field radiated from a single-mode circular waveguide (supporting the H11 mode) opening with a horn.
Description of the work carried out during the visit. Using an algorithm based on the described above approach, I have studied numerically the scattering of by a uniform thin dielectric disk in terms of the Purcell effect (modification of spontaneous emission) or dependence of the power radiated by an elementary dipole in the presence of the disk and power absorbed in the disk on the disk parameters. The term “Purcell effect” comes from quantum optics and labels resonant enhancement or, in more a general sense, modification of the spontaneous emission of an atomic or molecular dipole in non-homogeneous environment. Today’s interest, in optics, in this phenomenon is explained by the ability of various nano- and micro-size particles to increase spontaneous emission by many orders of magnitude; such enhancement leads directly to applications connected to microlasers and cavity quantum electrodynamics. More precisely the study of this effect deals with the radiated and absorbed powers associated with elementary dipoles near various resonant objects. As a rule the Purcell effect has been estimated using the so-called “Purcell factor” which is proportional to the ratio of the resonant mode quality factor Q to the mode volume V. However, it has been recently convincingly argued that this factor, originally derived for closed cavities with imperfectly conducting walls, cannot be used in the case of open resonators such as dielectric or semiconductor microdisks. The reasons are twofold: here the natural modes do not form a complete orthogonal set of field functions and the resonance does not lead to one-term representation of the spontaneous emission rate. Therefore for an accurate estimation of the Purcell effect for open resonators it is mandatory to use full-wave modelling methods and convergent computational techniques.
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As a first step of the Purcell effect study (using spectral integral equations combined with analytical regularization technique) I considered the problem of finding the electromagnetic field emitted by an elementary electric dipole (EED). For simplicity, I supposed the EED located at the height 
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 above a material (i.e. magneto-dielectric) disk of radius  and thickness 
[image: image3.wmf]t

 and placed on the axis of rotation parallel to the disk (Fig. 1). Then the total field can be viewed as a sum of the incident and scattered fields, the incident field being generated by the same EED in free space. It has to satisfy the inhomogeneous Maxwell equations off the disk surface, the boundary conditions on this surface, and the radiation condition at infinity. The azimuth dependence of both the incident and the scattered field functions, in the natural cylindrical coordinates 
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If the disk thickness is small 
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, as typical for mm and sub-mm-wave disk resonators and THz lasers, one can neglected the field inside the disk and shrink the disk volume to the median section, at the expense of introducing two-sided generalised boundary conditions (GBCs) at that section:
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Here, 
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 is the free-space impedance, 
[image: image12.wmf]R

 and 
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 are the relative electric and magnetic resistivities, 
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 is the one-side unit normal vector, and the subscript tg marks the tangential field vectors. In the case of the disk material being optically dense 
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where 
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 is the wavenumber, Z is the relative impedance, and 
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 are the relative permittivity and permeability of the disk material, respectively.
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Further I have presented the field components in terms of a Fourier series in the azimuth coordinate 
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 and scalar and vector Hankel integral transforms in the radial coordinate. Substituting these functions into the GBCs, we obtain a set of dual IEs for each azimuth order 
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. Then I have used the method of analytical regularization to invert the IEs’ static parts and reduce them to two pairs of coupled Fredholm second kind IEs with smooth kernels. The features of the latter IEs guarantee the existence and uniqueness of the solution. What is remarkable is that any reasonable discretization of these IEs (I have used a Nystrom–type method with Gauss higher-order quadratures) yields an algorithm with guaranteed convergence if the order of discretization is increased. I have noted that only 
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 unknowns are needed to compute the far-fields with a uniform relative accuracy of not less than 4 correct digits. This is supported by the plots in Fig. 2, where the dependences of the relative computational errors on the order of discretization scheme N are presented. These errors are defined as normalised values of the differences between the radiated (and absorbed) powers computed with given N and 2N. As one can see, an exponential convergence takes place.

To verify the results, I have also compared them with the data computed using the commercial code FEKO, which is based on the planar-surface IEs and the moment-method technique; both sets of data agree well although FEKO needs hours for a single-wavelength computation instead of a few seconds with our method.
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Figs. 3 and 4 present, respectively, the dependences of the radiated (
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) and absorbed (
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) powers on the normalized frequency 
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 correspond to the different losses in the material. These quantities are normalized by the power radiated by the same dipole placed into free space, which is 
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 is the dipole current, and d << λ is the dipole length. One can see the resonances in both the radiated and absorbed powers at certain frequencies. Note that the peak values of 
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A good insight into the nature of thin-disk resonances can be obtained using the effective index theory. According to this theory, the approximate characteristic equation for the thin-disk resonances of arbitrary azimuth order m (i.e. with the field dependence given by 
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 is the effective refractive index of the disk. The latter quantity is found as the propagation coefficient of the principal TM-polarized natural guided wave (i.e. having 
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) of the infinite dielectric layer of the same composition, normalized by the free-space wavenumber. Within the model considered, this value is obtained from the conditions (1) if we use them to find a natural TM-wave guided by a thin material layer. The result is 
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, where R is a dimensionless and complex-valued function of the wavelength, layer thickness and dielectric permittivity.

In our case of the on-axis EED (Fig. 1), the azimuth field dependence corresponds to 
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 (i.e. neglecting the losses) are marked with stars in Figs. 3 and 4. They are remarkably close to the corresponding maxima in radiated and absorbed powers, especially for the case of 
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As the next step of the Purcell effect study, I consider the problem of finding the electromagnetic field emitted by of the EED which is located out of the disk axis (Fig 5). The main difference of this case from the previous one is that to find the scattered field we have to consider the full set of azimuth orders (
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). This set can be truncated to finite value which depends on the frequency, the distance between the source and the axis of the disk (0=r0/a), and the required accuracy. A computation have shown, in this case the radiated (
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) and absorbed (
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) powers also display resonances which corresponds to the different azimuth orders (see Figs. 6 and 7). Note that the Q-factors of these resonances become higher with increasing the azimuth order. All these (except the last one) resonances correspond to the whispering gallery modes (WGMs) of the dielectric disk cavity. 
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Fig. 6. Normalized radiated power for off-axis dipole vs. the dimensionless frequency parameter, ka;
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Fig. 7. The same as in Fig. 6 for the normalized absorbed power.
The 3-D far field pattern of the in-resonance total field at the normalized frequency ka = 19.4544318 is presented in Fig. 8a. This pattern clearly displays two features: first, the radiation is concentrated in the plane of the disk and, second, in the azimuth plane the pattern shows 2m almost identical lobes characteristic for the WGM field. Fig. 8b shows the same at another resonance, for ka = 19.9349919. This resonance apparently corresponds to the mixture of two or more WGMs in the disk cavity and has much lower Q-factor. Nevertheless such a resonance is also interesting due to the higher directivity of the radiated field as compared to the directivity of WGMs.
In summary, we have accurately quantified the Purcell effect or, equivalently, the modification of powers radiated and absorbed in the disk for a elementary horizontal electric dipole in the presence of a thin dielectric microdisk, by studying it from first principles. This has been done over a wide range of the normalized wavelengths. 

The resonances revealed in the normalized powers can be explained using the effective refractive index model of the disk. They are caused by the standing waves formed due to the reflections of the guided wave of the dielectric slab at the disk rim. 
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Fig. 8. Total far field patterns for the same geometry with tan  = 10-5 and a) ka = 19.4544318; ka = 19.9349919.
This observation can serve as a de-facto justification of the empirical model of effective refractive index from the viewpoint of rigorous Maxwell theory. Thus, the analytical-numerical method which has been applied here places thin material disks in the same position as spherical scatterers in the sense that they can be computed very economically and with controlled accuracy.
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Fig. 1. Geometry of an on-axis dipole above a dielectric microdisk.





Fig. 2. Relative computation errors in terms of the decay components vs. the order of discretization scheme. Disk parameters are given in the inset. The truncation number corresponds to the upper limit of integration in the spectral integrals.





Fig. 3. Normalized radiated power vs. the dimensionless frequency parameter, ka; the stars indicate the zeros of the approximate characteristic equation (3) for m = 1.





Fig. 4. The same as in Fig. 3 for the normalized absorbed power.
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Fig. 5. Geometry of a dipole above a dielectric microdisk.
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