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1) Purpose of the visit 

 

In recent years submillimeter wave focusing device design has benefited from new 

opportunities coming from the studies on metamaterials, artificial composite structures which 

exhibit novel properties not found in natural materials. The potential application of 

metamaterials in the imaging context was first suggested by Pendry with his idea of a “perfect 

lens” capable of focusing beyond the diffraction limit [1]. Subsequently, several groups have 

explored the possibility of subwavelength focusing using metamaterials. 

The interaction of the electromagnetic radiation with metamaterials can be conveniently 

characterized using homogenization methods, which describe these structures as bulk 

homogeneous materials with certain effective parameters. 

 

The applied electromagnetism group at the University of Siena has recently developed a 

method for the homogenization of reciprocal metamaterials [2]. So far, this approachhas been 

applied in connection with the dual dipole approximation for the characterization of the 

embedded particles, i.e. microscopic electric and magnetic current distributionsin the unit cell 

have been assumed to be described by a superposition of electric and magnetic dipole 

moments. The dual dipole approximation may provide satisfactory results, but it inherently 

introduces noncausal features into the electromagnetic interaction among the inclusions [3]. 

The proposed homogenization approach being general, more sophisticated methods, like  

integral-equation formulations, can be used for the description of the current distribution 

induced in the inclusions.  

The research group at the Université catholique de Louvain has a long experience in full-wave 

analysis of periodic structures and in particular in the Method of Moment (MoM) technique 

for the simulation of structures made of complex elements, involving both metal and 

dielectric parts [4]. The purpose of the exchange visit was to use the full-wave analysis 

provided by MoM to characterize electromagnetic properties of 3D periodic arrays and 

exploit it withina homogenization method. 
 

2) Description of the work carried out during the visit and main results 

obtained 

 

In the following we show the idea that was developed to combine a Floquet based 

homogenization method and a full wave description of the induced currents in the inclusions 

via MoM. 

Let us consider a 3D periodic array with one (or more)inclusion in the unit celland let us 

assume the presence of an incident space harmonic electromagnetic field corresponding to the 

field radiated by impressed sources uniformly distributed all over the array with arbitrary 

space and time harmonic dependence. The microscopic field ( ),  ( )E r H r in the unit cell can 

be computed through MoM introducing equivalent electric and magneticsurface currents on 

the interfaces between the inclusion and the host medium. Moreover, by combining the 

Extinction and Love’s theorems (see Fig. 1), the microscopic field in the unit cell can be 

written as the sum of the field inside the inclusion and the field in the remaining volume of 

the cell. The use of the equivalence theorems allows one also to exploit the periodic Green’s 

function to compute the field inside the inclusions. 

The homogenization method requires a spatial averaging of the microscopic fieldas well as of 

the displacement vectors; as defined in [5], we take as averaged field ,  av avE H  the zero-order 



Floquet harmonic, and similar procedure leads to the averaged displacement vectors ,  av avD B  

such that it is possible to write the constitutive relations of the homogenized bianisotropic 

metamaterial as 
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where , , ,eff eff eff effε ξ μ ζ  are the effective constitutive parameters we are looking for. 

 

 

 

 
Fig. 1 Combination of the extinction and Love’s theorem to define equivalent electric and magnetic currents at the 

surface of the object. 

 

The method proposed would require the use of the 3D periodic Green’s function in the MoM 

formulation to compute the equivalent electric and magnetic surface currents on the 

inclusions, but we tried to exploit another approach which is less cumbersome from a 

computational point of view and which has various advantages as explained later. The group 

of the Université catholique de Louvain has recently published an excellent work [6]in which 

an efficient surface integral equation method for the analysis of a finite stack of 2D periodic 

layers, containing any complex inclusion, is proposed. This approach is based on a double use 

of surface equivalence at inclusions level and at flat(possibly fictitious) interfaces between 

layers. The Poggio-Miller-Chang-Harrigton-Wu-Tsai (PMCHWT) formulation, which is 

based on the setting of the continuity of both the tangential electric and magnetic fields at the 

interface, is used to impose the boundary conditions. According to the method in [6], an 

equivalent electric and magnetic currents plane is inserted at every interface between layers. 

The equivalent currents on the planes sandwiching the layer isolate it from external sources, 

the unknowns related to the equivalent currents on the inclusions are eliminated from the final 

system of equations and the 2D periodic Green’s function for an homogenous medium can be 

used. 

Some further checks of the approach proposed in [6] for the structures under analysis were 

performed during the visit, by comparing the results provided by this method with those 

obtained with a commercial full-wave electromagnetic software. In particular, the distribution 

of the electric filed on a x-y plane was compared.  

Having as a final objective the development of the homogenization method, the preliminary 

idea was to extend this tool, available for a finite number of layers in one direction, to the 

analysis of a 3Dinfinitely periodic structure by imposing a further periodic boundary 

condition for the currents densities on consecutive interfaces. By indicating with ix the vector 

of the equivalent electric and magnetic current densities on the i-th interface, we impose the 

quasi periodic condition between the current densities of two consecutive interfaces
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x x , h  being the thickness of the layer between the two interfaces.  In this way, it 

is still possible to use the tool for a 2D periodic structure avoiding the calculation and/or 

tabulation of the 3D Green’s function. In addition, the employment of equivalent currents at 

the interfaces between consecutive layers, preserves a limited number of MoM unknowns, 

associated with interfaces only. The use of the “interstitial” interface equivalent currents 

limits the study of the 3D infinite array to the analysis of two of its layers to determine the 

equivalent currents at the surface of the inclusions from which the microscopic and hence the 

averaged field and displacement vectors can be computed. The detailed formulas to arrive to 

(2.1)are omitted here for the sake of brevity. 

 

The first necessary step was to check the validity of theextension of“interstitial”currents 

technique for the study of the 3D periodic metamaterial. 

To do that we considereda quasi-periodic source distribution, i.e. a source distribution which 

is periodic according to a linear phase-shift sjh
e
 k r , exciting the 2D periodic structurewith 

finite but large number of layers in the third dimension (here z). A simplifiedscheme of the 

structure is shown in Fig. 2. Note that the periodicity of the inclusions along x and y-direction 

is taken implicitly into account by using the 2D periodic Green’s function when computing 

the MoM impedance matrices. 

 

 
 

Fig. 2: Scheme of a finite stack of 2D-periodic layers of materials excited by a quasi-periodic source distribution 

 

By applying the method developed in [6] to this problem, it is possible to find the interstitial 

currents on the interfaces of each layer in the finite stack. If the number of the layers is large 

enough the solution obtained for the currents in the finite stack caseshould converge to the 

solution in the case of a 3D infinite array.In the 3D periodic material the quasi-periodic source 

distribution can only excite Floquet modes with phase shifts between consecutive unit-cells 

identical to the phase shift of the excitation. Therefore the equivalent currents will have the 

same quasi-periodicity.  

 

In the following we show the results related to a structure with 33 layers (34 interfaces) and 

one spherical dielectric inclusion in the unit cell. The comparison between the currents in the 

finite layered structure and the solution of the 3D infinite array has been performed in the 

least square sense. In detail, we computed the following ratio 
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where infx is 

the solution in the infinite case and ix is the solution related to the i-th interface  of the finite 

stack; then we reconstructed the currents densities in the 3D infinite structure case as 



inf

rec

i iratiox x .In Fig. 3we show the comparison of the solution in the infinite array case and 

the solution at interfacesn. 2, 5, 20, 25, 34 of the finite stack. As expected, we can observe 

that the currents in the finite structurecase and the one of theinfinite array case, are very close 

when we are far from the first and the last layers where the solution is affected by the 

truncation of the structure. 

 

 
 

 

 

 
 

 
Fig. 3: Comparison between the solution for interstitial currents in the 3D periodic infinite structure andin  the finite 

stack of the 2D periodic layers structure both excited by a quasi-periodic source distribution 
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These preliminary results have boosted the possibility to use the extended interstitial currents  

tool not only in the homogenization approach but also in the eigenmode analysis of the 3D 

infinite array.In fact to check the accuracy of an homogenization method, it is necessary to 

analyse the fundamental propagative modes of the material we want to homogenize. 

The study of the infinite structure can be limited to the analysis of two of its layers and the 

equation to be solved to find the eigenmodes of the composite material, obtained by imposing 

the continuity of tangential fields over an interface, is 
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where ,pi piZ is the self-impedance MoM matrix of the i-th interface, , 1pi piZ , 1,pi piZ  the MoM 

impedance matrices describing the interaction between consecutive planes, 
1

,o o


Z the self-

impedance matrix of the object, , 1, , 1 ,, , , ,pi o pi o o pi o pi Z Z Z Z  the impedance matrices related to 

the interaction between the plane above and below the object and the object itself, and
ˆjh zg e  k . 

From (2.2) a parabolic equation of the following formcan be written 

 

  2g gP x x  (2.3) 

 

Through (2.3) it is possible to find the eigenvalues g , related to the wave vector k  describing 

the eigenmodes of the structure. Since the matrix  gP whose eigenvalues are computed 

depends on the result g ,solving the eigenvalues problem requires an iterative method and an 

exhaustive research on k ,and only one eigenvalue at a time can be found.  

A sample example of the electric and magnetic eigen-currents of a 3D array structure with  

cylindrical inclusions analyzed with this method is shown in Fig. 4.  

 

 
Fig. 4: Eigen-currents related to a 3D infinite array with one cylindrical inclusion in the unit-cell 

 

A new technique has been then developed to linearize the eigenvaluesproblem and obtain an 

equation where the matrix, whose eigenvalues have to be found, is independent from them[7]. 

Moreover the big advantage of this novel technique is that the wave-vectors, corresponding to 

the found eigenvalues, can be computed in one operation. The technique consists of 

computing a modified self-impedance matrix for one interface which takes into account the 
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contribution of all the inclusions in the upper layers.The method is iterative and at each 

operation the number of upper layers included is doubled until reaching convergence. If  the 

structure (host medium and/or inclusions) is lossy and the number of layers is large enough, 

this method allows one to write a linear eigen-equation. The scheme of the situation is 

illustrated in Fig. 5. 

 
 

Fig. 5: Scheme simulated for the eigen-analysis of the 3D infinite array 

 

For more details about the method formulation see [7]. 

The accuracy of the results obtained with this technique can be checked by comparing the 

eigenvector of the linearized formulation with the currents needed to ensure the continuity of 

the field at the interface (solution of the exact formulation given by(2.2)).  

Some checks have been performed to verify that the continuity is ensured with excellent 

accuracy. Hence, the last two sources of errors in the result are related to the accuracy of the 

modified impedance matrix computation and to the MoM discretization of the problem. 

3) Future collaboration with host institution  

The study of  the combination of the Floquet based homogenization method and the full wave 

description of the induced currents in the inclusions via MoM has reached a promising step.It 

needs howeversome further investigations which could certainly be the topic of future 

collaborations between the two involved research units. 

4) Projected publications / articles resulting from the grant (ESF must 

be acknowledged in publications resulting from the grantee's work in 

relation with the grant) 

Part of the activity carried out during the period of the exchange visit is resulted in an abstract 

which has been submitted to the 9
th 

European Conference on Antennas and Propagation, titled 

“Efficient numerical analysis of 3D periodic metamaterials: multilayer approach and 

eigenmode analysis”, with D. Tihon, V. Sozio, N.A. Ozdemir, M. Albani and C. Craeye as 

authors. Moreover the work realized during the exchange and its further developments may be 

presented during conferences in the next future and they may become the object of 

publications in international journals. 



5) Other comments (if any) - Concluding Remarks 

During the exchange visit a formulation and first studies for combining an homogenization 

method  for  3D periodic metamaterials with a full wave description through MoM of the 

induced currents have been developed. An exact formulation for the analysis of the 

eigenmodes of the 3D infinite array, based on the PMCHWT formulation,has been elaborated 

and a new iterative technique to linearize the eigenvalues problem has been developed. 

Preliminary tests of the devisedmethods have given promising results. 
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