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The purpose of my visit was better understanding the relationships between
logic, Ramsey theory, sofic groups and operator algebras. During my stay, I
found that methods from logic can be succesfully applied in the study of sofic
and hyperlinear groups. For instance, I observed that sofic groups can be char-
acterized as those (countable discrete) groups that can be embedded in the
permutation group of some (or, equivalently, any) infinite hyper-natural num-
ber. Analogously, hyperlinear groups can be characterized as those groups that
can be embedded in the groups of unitary v X v matrices, where v is some (or,
equivalently, any) infinite hyper-natural number. A similar characterization is
given by Vladimir Pestov in [P], where it is proved that a (countable discrete)
group is sofic (resp. hyperlinear) if and only if it can be embedded in some (or,
equivalently, any) ultraproduct of the sequence of finite symmetric groups (resp.
finite rank unitary groups). This result motivates the name of universal sofic
(resp. hyperlinear) groups for the ultraproducts of the finite symmetric groups
(resp finite rank unitary groups). Universal sofic groups have been studied by
Simon Thomas in [T], where it is proved that the failure of CH implies that
there are 22" -many non-isomorphic sofic groups. His proof uses some algebraic
properties of the finite symmetric groups, and it is not clear if and how it can
be modified to get a proof of the analogous statement for hyperlinear groups,
namely that the failure of C'H implies the existence of 92" -many nonisomorphic
universal hyperlinear groups. I noticed that model theory for metric structures,
introduced by Ben Yacoov, Berenstein, Hensov and Usvyatsov in [BYBHU],
can be used to get an alternative proof of Thomas’ theorem on universal sofic
groups, and to get a proof of the analogous statement for hyperlinear groups as
well. More precisely, one has to refer to stability theory for metric structures,
developed by Farah, Hart, Sherman and Shelah in [FHS2] and [FS] in order
to study the number of ultrapowers of C*-algebras and von Neumann algebras
(see [FHS1]). In particular, in those papers it is introduced the so called order
property for sequences of metric structures, and it is proved that the failure of
CH implies that any sequence with the order property has 92" -many noniso-
morphic metric ultraproducts. The result about universal sofic and hyperlinear
groups is deduced from this one showing that the sequences of finite symmetric
and unitary groups have the order property.

During my visit, I also gave a talk about these topics at the University
of Pisa entitled "L "ipotesi del continuo ed ultrapotenze di C*-algebre e algebre
di von Neumann" (" The continuum hypothesis and ultrapowers of C*-algebras
and von Neumann algebras"), invited by prof. Mauro di Nasso. An abstract (in
Ttalian) of the talk can be found on the website

http://poisson.phc.unipi.it/ “mantova/slap /it /node/29.



The slides (in Italian) from the talk will be soon available on the same

website.

Finally, in this period I wrote a survey paper about these topics, that you
can find attached in the rest of this document. The paper, entitled "Continuum
Logic, Operator Algebras and Sofic and Hyperlinear Groups: A Survey", is
aimed to present the results that I summarized in this Scientific Report to a
broad public, that does not have necessarily any specific previous knowledge
about sofic groups, model theory and operator algebras.
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Chapter 1

C*-algebras

An (abstract) C*-algebra A is a Banach algebra endowed with an antilinear
involution * such that ||z*z| = ||z|* for every z € A.

A norm-closed subspace of B (H), where H is a Hilbert space, is a (concrete)
C*-algebra. Any abstract C*-algebra is isomorphic to a concrete C*-algebra. A
*_homomorphism ® from a C*-algebra A to a C*-algebra A’ is an algebraic ho-
momorphism such that ® (z*) = ® (z)" for every z € M. It can be proved that
any *-homomorphism is contractive, and hence an injective *-homomorphism is
isometric.

An element z of a C*-algebra A is called

*

e normal if zz* = z*x

self-adjoint if x = «*
e positive if 2 = y? for some self-adjoint

e unitary if zz* = z*2 = 1 (when A has a unit)

e projection if 2* = z = 22

e partial isometry iff x*z and xz* are isometries

If H a Hilbert space, examples of C*-algebras are B (H), the set IC(H) of
compact bounded linear operators on H and the quotient B (H) /K (H), called
Calkin algebra. If X is a locally compact Hausdorff space, then the set Cy (X)
of continuous complex-valued continuous functions on X vanishing at infinity
(namely, functions f such that, Ve > 0, (|f| — ) V 0 is compactly supported)
with the sup norm and adjunction f* = f is a commutative C*-algebra. Every
commutative C*-algebra is isomorphic to a C*-algebra of this kind. An element

fof Co(X)is
o self-adjoint iff f[X] C R

e positive iff f[X] C R4



e unitary iff f[X] C S!
e invertible iff 0 ¢ f [X]

e projection iff f is the characteristic function of a connected component of
X

A linear functional ¢ on a C*-algebra is called

e positive if sends positive elements to positive real numbers
e state if it is positive and has norm 1

e tracial if ¢ (xy) = ¢ (yx) for every z,y € A

A positive functional ¢ is automatically bounded, and it is called faithful
if, for a positive, ¢ (a) = 0 iff a = 0.



Chapter 2

Von Neumann algebras

2.1 Definition and examples of von Neumann al-
gebras

The strong (resp. weak) operator topology on B (H) is defined by the following
rule: a net (7;);.; converges to 1" in the strong (resp. weak) operator topology
if and only if for every = € H, the net (Tjz);., converges to Tz in the norm
(resp. weak) topology of B(H). The o-strong (resp. o-weak) topology on
B (H) is defined by the following rule: a net (73);.; converges to T" in the o-
strong or ultrastrong (resp. o-weak or ultraweak) topology if and only if for
every (zn),cy € [? (H), the net (T"z,,) converges to (T'x,), ¢y in the strong
(resp. weak) topology of [ (H).

It is easily seen that the strong topology is stronger than the weak topology,
the o-strong topology is stronger than the strong topology and the o-weak
topology is stronger than the weak topology. In general o-weak and strong
topology are not comparable. Moreover, o-strong and strong (resp. o-weak and
weak) operator topologies agree on bounded sets.

It can be proved that, if M is a von Neumann algebra, then there is a unique
Banach space X such that M is the dual of X, and the o-weak topology on M
is the weak™ topology on M as the dual of X.

neN

Definizione 2.1.1 A von Neumann algebra M acting on the Hilbert space H
is a weak operator closed self-adjoint subalgebra of B (H)

Since the norm topology is stronger than the weak operator topology, a von
Neumann algebra is in particular a C*-algebra. It can be shown that a von
Neumann algebra always contains a multiplicative identity.

The strong (resp. o-strong, weak, o-weak) topology on a von Neumann
algebra M C B(H) is the subspace topology on M induced by the strong
(resp. o-strong, weak, o-weak) topology on B (H). We tend to identify two
von Neumann algebras when they are *-isomorphic, even though they act on



different Hilbert spaces. It has to be noted though that the weak and strong
operator topologies induced on M by these two actions are in general different.
It can be proved that, instead, o-strong and o-weak topology do not depend on
the concrete representation of the von Neumann algebra, i.e. they are intrinsic.
Moreover, any *-isomorphism of von Neumann algebras is a homeomorphism
with respect to the o-weak and o-strong topologies.

The foundation of the theory of von Neumann algebras is the Bicommutant
Theorem, proved by von Neumann in the ’30s. If S is a subset of B (H), its
commutant is

S'={reB(H)|VyeS, zy=yx}.

The double commutant S” of S is the commutant of the commutant of S.

Teorema 2.1.2 If S is a self-adjoint subalgebra of B (H), then S is weakly
closed (i.e., it is a von Neumann algebra) iff " = S

It follows that, if S is a self-adjoint subset of B (H), then S” is the smallest
von Neumann algebra containing S.

The von Neumann Bicommutant theorem gives an easy way to define von
Neumann algebras. For example, consider a countable discrete group I' and the
left regular representation A : I' — U (¢ (I')), defined by

Ao (8,) = G-

Then, the double commutant of A[I'] is a von Neumann algebra LI', called
the group von Neumann algebra of I'. If I' acts on a probability space with
measure preserving transformations, one can define a unitary representation
o:T — L?(X) by

(026) (@) = f (v"'2)

and also the unitary representation ¢ @ A : I' — L? (X) @ ¢?(T'), where X is
again the left regular representation. Since L™ (X) acts naturally on L? (X),
and hence on L? (X) ® ¢2 ('), setting

t(f ®6y) = (tf) @y

for every y € I', t € L (X) and f € L? (X), one regard L* (X) as a subset of
B (L*(X) ®*(T')) and hence consider the double commutant L> (X) x I' of
the set

L¥(X)u (e @A),

which is called cross product von Neumann algebra.
Another classic result is the Kaplanski density theorem

Teorema 2.1.3 If A is a self-adjoint subalgebra of B (H), then the unit ball
of A" is the strong closure of the unit ball of A, and the unit ball of (A"),, =
{x € A" | x is self-adjoint} is the strong closure of the unit ball of

Ase ={x € Az is self-adjoint} .



The fact that the unit ball of B (H) is compact in the weak operator topology
is proved in a way similar to the fact that the unit ball of H is weakly compact,
applying the Tychonoff theorem on products of compact spaces.

As a direct consequence of the fact that a von Neumann algebra is strongly
close, one can deduce that any upper bounded increasing net of self-adjoint
elements in a von Neumann algebra M converges strongly to its.sup, which
belongs to M. Moreover, every element x can be written uniquely in the form
wlz|, where |z| = (m*x)% € M is the absolute value of z, i.e. the only positive
element of B (H) such that |||z|¢]| = ||z€]| for every & € H, and uw € M is the
partial isometry such that w*u is the projection onto ran (|z|) = ran(z*) =
ker (z)* and wu* is the projection onto ran (z).

2.2 Linear functionals on von Neumann alge-
bras

The strongly and weakly continuous linear functionals on a von Neumann alge-
bra admit a precise characterization.

Proposizione 2.2.1 If M C B(H) is a von Neumann algebra and ¢ a linear
functional on M, TFAE

1. ¢ is weakly continuous
2. ¢ is strongly continuous

3. there are &1, ...,&,,, M, .-, Ny € H such that, Vx € M,

n

¢ (x) = (26, m)

k=1
Proof.

2 = 3 By strong continuity, there are ¢ > 0 and &4,...,£,, € H such that,
Ve e M, if ||z&,|| < eforallie {1,2,....,n}, then |¢ (x)| < 1. Define $ the
norm closure the subspace

{(xélv 7x§n) ‘LE € M}
in H". Define the bounded linear functional ) on § by

(0 (mgh 7‘7;571) =¢ (LL')

Observe that ¢ is well defined since, if ¢, = 0 for every i € {1,2,...,n},
then ¢ () = 0. By the Riesz-Fischer theorem, there are nq,...,n, € H
such that, for every x € M,

n

¢(x) =9 (:Cflv 7x€n) = Z <x§i777i> .

i=1



3 = 1= 2 Obvious.

[
If, for i € {1,2}, M; C B (H;) is a von Neumann algebra, then the algebraic
tensor product M; ® M acts on the Hilbertian tensor product H; ® Hs, by

(z@y)(E@n) = (z€) @ (yn).

This gives an inclusion of My ® Ms in B (H; ® Hs). The strong closure of
M;®Ms in B (Hy, ® Hs) is a von Neumann algebra, called the tensor product
M1 X M2 of M1 and MQ.

For example, if M,, = B (C") is the von Neumann algebra of n x n matrices
with scalar coefficients and M C B (H) is any von Neumann algebra, then
C"®@H~H"and M,, ® M ~M,, (M) C B(H") is the von Neumann algebra
of n X n matrices with coefficients in M.

The o-strong and o-weak topology on a von Neumann algebra M C B (H)
can be characterized in terms of tensor products. In fact, if 1 is the trivial von
Neumann algebra in B (l2 (N, (C)), then

M®1CB(H®IP*(N,C)) =B (*>(N,H))
where, VT € M,V (£,,),cy € I (N, H),
(T & 1) (fn)nEN = (Tgn)nEN )

is a von Neumann algebra isomorphic to M. The strong (resp. weak) weak
operator topology on M ®1 C B (I1? (N, H)) is exactly (modulo the isomorphism
T — T ®1) the o-strong (res. o-weak) operator topology on M.

The o-weak and o-strong functionals admit themselves a characterization.

Proposizione 2.2.2 If ¢ is a linear functional on a von Neumann algebra M,
TFAE

1. 3(E)nen > Mn)pen € 12 (H) such that, Yo € M,

¢(2) =) (2€,.7,)

neN

2. ¢ is o-weakly continuous

3. ¢ is o-strongly continuous

4. ¢ is weakly continuous on the unit ball My of M

5. ¢ is strongly continuous on the unit ball My of M
Proof.

1 = 2 Suppose (z;);.; converges o-weakly to 0. Thus ((Iign)neN)ieI converges

weakly to 0 in ¢? (N, H), and hence (¢ (%4));er = (ZneN <mi§n,nn>)iej
converges to 0.



2 = 3 It follows from the fact that the o-strong topology is stronger than the
o-weak topology.

2 = 4 Tt follows from the fact that o-weak and weak operator topologies agree
on bounded sets

3 =5 It follows from the fact that o-strong and strong operator topologies
agree on bounded sets

4 = 5 It follows that the strong operator topology is stronger than the weak
operator topology

5 = 2 The o-weak topology is a weak™ topology on M. Moreover, o-weak and
weak topology agree on bounded sets. The conclusion follows from the
Krein-Smulian theorem.

3 = 1 By o-weak continuity, there are & = (EZ)neN for i € {1,2,...,N} and
e > 0 such that ) Haz:filn2 < e forevery i € {1,2,..., N} implies |¢ (z)| <

1. Define $ the norm closure of

{(s€'s e [ e 1)

in 2 (H,N x {1,2,..., N}) and let ¥ be the bounded linear functional on
9 defined by

o (o€ ae™) = 6 ().
By the Riesz-Fisher theorem, there is (771, ey 77") € ?(H,Nx {1,2,...N})

such that
o) = o (wg, . a")
<(m£1, ...,fo) , (771, ...,nN)>
N
= 2> (athaf).
k=1 jeN

The result follows observing that ¢2 (H,N x {1,2,...,N}) ~ ¢? (H,N).
]
Corollario 2.2.3 If 7 is a *-representation of M on H, TFAE
1. w is normal, i.e. ultraweak-ultraweak continuous
2. the restriction of ™ to the unit ball is weak-weak continuous
3. the restriction of w to the unit ball is strong-weak continuous

4. m is ultrastrong-ultraweak continuous

10



Proof.
1 = 2 Obvious
2 = 3 Obvious

3 = 4 Since 7 is a contraction and weak and ultraweak topologies coincide on
bounded sets, 7|y, is weak-weak continuous.

4 = 1 Consider the representation I of M on ¢% (H) defined by

II (1') (gn)neN = (7T (fE) fn)nEN :

Since 7 is a contraction and o-strong and strong topology coincide on
bounded sets, 7|y, is strong-ultraweak continuous. This implies that T},
is strong-weak continuous. If £, € €% (H) and v, (T) = (T¢,n) for
T € B ((*(H)), then ¢, oI5, is strongly continuous. Since ¢, , oIl is a
linear functional on M, this implies that ¢, , oIl is ultraweakly continuous.
Since this is true for every &, € £2 (H), II is ultraweak-weak continuous
and hence 7 is ultraweak-ultraweak continuous.

]

From the fact that (o-)strong and (o-)weak operator topologies have the
same continuous functionals, it follows that a convex subset of B (H) is (o-
)strongly closed iff it is (o-)weakly closed.

The follow characterization of von Neumann algebras follows directly from
this fact, the von Neumann bicommutant theorem and the Kaplanski density
theorem.

Proposizione 2.2.4 If A is a self-adjoint subalgebra of B (H), TFAE
1. AV =A
. A is a weakly closed, i.e. it is a von Neumann algebra

. A is strongly closed

2
3
4. A is o-strongly closed
5. A is o-weakly closed
6. the unit ball of A is weakly closed
7. the unit ball of A is strongly closed
Proof.
1 & 2 It is the Bicommutant Theorem
2 & 3 It follows from the fact that a convex set is (o-)strongly closed iff it is
(o-)weakly closed

11



4 < 5 Idem
6 < 7 Idem

2 & 6 It follows from the Krein-Smulian theorem and the fact that o-weak and
weak topology coincide on bounded sets

3 = 4 It follows from the fact that the o-strong topology is stronger than the
strong topology

5 = 6 It follows from the fact that the unit ball of B (H) is strongly closed and
o-strong and strong topology coincide on bounded sets

]
Proposizione 2.2.5 If ¢ is a state on a von Neumann algebra M, TFAE

1. ¢ is o-weakly continuous

2. for every bounded decreasing net (y;),c; in My such that inficry; = 0,
lim;er ¢ (yi) = inficr ¢ (y:) =0

3. ¢ is normal, i.e. for every bounded increasing net (x;);c; of self-adjoint
elements of M, lim;cr ¢ (x;) exists and it is equal to ¢ (sup; x;)
Proof.

1 = 2 The net (y;);c; converges strongly to 0, and ¢ is strongly continuous on
bounded sets.

2 = 3 Consider x = sup, z; and y; = x — x; for every i € I.
3 = 2 Consider x; = —y; and observe that sup, z; = —inf,;y;, =0

2 =1 It is enough to prove that, if (2;),.; is a net in M; strongly converging
to 0, then lim;es ¢ (2;) = 0. If (2;),c; is such a net, (%) , and
i€

(z%) | are nets of self-adjoint elements in M; strongly converging to
i€

0. Therefore, without loss of generality, I can assume z; = x for every
i € I. In this case, (LI%I) and (m) are nets of positive

2 Jier 2 Jier

elements in M strongly converging to 0. It is therefore enough considering
the case z; € My for every 7 € I. In this case, suppose y; = sup;>; z;
and observe that (y;);c; is a bounded decreasing net in M, such that
inf;eyy; = 0. Thus, lim; ¢ (y;) = 0. Since ¢ (y;) > ¢ (z;) > 0, it follows
that lim;e; ¢ (z;) = 0.

12



2.3 Projections and classification

A projection p of a von Neumann algebra M is a self-adjoint idempotent element
of M. Projections have a central role in the study of von Neumann algebra.

Proposizione 2.3.1 If M is a von Neumann algebra, then M is the norm
closure of the set of its projections.

If M is a von Neumann algebra and p,q € M are projections, we write

p<qifpg=qp=p

p ~ q if there is u € M such that v*u = p and wu* = ¢

pZqifp~p <q.

It can be proved that = is a preorder whose induced equivalence relation is

A projection p € M is called

finite if p ~ ¢ < p implies ¢ = p

infinite if it is not finite or, equivalently, there is a countably infinite
orthogonal family of pairwise equivalent nonzero subprojections of p

properly infinite if p ~ p; + p2, p1 ~ p ~ p2 and p; Lps or, equivalently,
p is the sum of a countably infinite orthogonal family of subprojections of
p isomorphic to p

purely infinite if it does not contain any nonzero finite projection

semifinite if does not contain any purely infinite projection or, equiva-
lently, every nonzero subprojection of p contains a nonzero finite projection

abelian if pMp is abelian
minimal if it is minimal with respect to the = preorder
continuous if it does not contain any nonzero abelian projection

discrete if does not contain any nonzero continuous subprojection or,
equivalently, every nonzero subprojection of p contains a nonzero abelian
projection

It is easily seen that these properties are preserved under equivalence. More-
over, any abelian projection and any subprojection of a finite projection is finite.

A von Neumann algebra M is called finite (infinite, purely infinite, etc...) if
the identity 15 of M is finite (infinite, purely infinite, etc...).

A von Neumann algebra is called of

type I if it is discrete

13



e type II; if is continuous and finite
e type Il if it is semifinite, continuous and infinite
e type III if it is purely infinite

Maximality arguments show that, if M is a von Neumann algebra, then M
can be written as a direct sum of

e a finite and a properly infinite von Neumann algebra
e a semifinite and a purely infinite von Neumann algebra

e a discrete and a continuous von Neumann algebra

From this result , it is not difficult to deduce the classification theorem for
von Neumann algebras: any von Neumann algebra can be written as a direct
sum

M = M & My, & My, & Mg

where M7, Mrr,, M1, Mrrr are von Neumann algebras of type I,11;,I1, and
11T respectively. Moreover, M; can be written as a finite direct sum of an
infinite discrete (i.e. of type I,) von Neumann algebra M;_ isomorphic to
B (H)® Z and von Neumann algebras M, isomorphic to M,, ® Z,, (i.e. of type
I,,) for n € N, where H is a Hilbert space, M, is the algebra of n x n matrixes
over C and Z, Z,, are commutative von Neumann algebras.

It can be proved that a von Neumann algebra M is finite if and only if it
has a tracial state 7. Moreover, if M is a finite factor, such a tracial state is
unique and it turns out to be normal, faithful and such that, for every x € M,
7 (x) 1 is the only element of C1 C M which belongs to the norm closed convex
hull of {uzu* | € M unitary } (Diximier property).

For a projection p is equivalent being finite and the fact that, whenever ¢, r
are equivalent subprojections of p, also p— ¢ and p — r are equivalent subprojec-
tions of p. This implies that, in a finite von Neumann algebra, a parial isometry
u in M such that u*u = 1 is a unitary. Moreover, any two equivalent projec-
tions are conjugate by a unitary and, as a consequence, every z € M has a polar
decomposition of the form u|z| where u is a unitary.

2.4 Factors and dimension function

Definizione 2.4.1 The center Z (M) of a von Neumann algebra M is MNM'.
A von Neumann algebra with trivial center is called o factor.

Every von Neumann algebra can be decomposed into an integral of factors.
Therefore, in order to study von Neumann algebras, it is no loss of generality
restricting to factors. By the classification theorem, a finite factor is either of
type I or of type I, for some n € N.

14



If M is a factor, the pre-order X is total, and a projection is abelian if and
only if it is finite. It follows that, in a factor, any two minimal projections
are equivalent. Moreover, a type II; factor is a finite factor that does not
contain any minimal projection. Instead, a finite type I factor M is a factor
such that any projection contains a minimal projection. Since any two minimal
projections are conjugate and orthogonal, M has only finitely many minimal
projections. If n is the number of minimal projections of M, then M is of type
I,,, i.e. isomorphic to the algebra M, of n x n matrices over C.

If M is a finite factor, there is a unique function d, called dimension
function, from the set of projections of M to [0,1] such that d(1) = 1,
dip+q) = d(p) +d(g) if pLg and d(p) < d(q) iff p X ¢q. Moreover, if 7 is
the trace of M, then 7 (p) = d(p) for every projection p. In fact, if M = M,, is
of type I,,, then it is clear that

d (p) = dimrank (p)

is the unique function having those properties. Moreover, the trace 7 of M, is
the usual matrix trace, and it is cleat that in this case d(p) = 7 (p) for every
projection p. Suppose now that M is a Il factor. Since = is total in M and
M has no minimal projections, it follows that any nonzero projection of M
has nonzero equivalent orthogonal subprojections. Define p; = 1 and py = 0.
Suppose {p;,qi};c; is a maximal orthogonal family of projections of M such
that p; ~ ¢; for every i € I. Define

b1 = Zpi

i€l

q1 = ZQL

el

and

Then, pL ~ qi, p1,qy are orthogonal and pr+aq = 1. Analogously, find
p1 < p1 such that pL o~ (p% — p%) and define, if u is a partial isometry such
that u*u = p1 and uu* =p — D1,

ps =py Tupiu’.

Proceeding inductively, it is possible to define, for every diadic rational a, a
projection p, in M such that the function o — p, is monotone and, if o < 3,
then pg — pa ~ pPa—q-. Define now, for a € [0, 1],

Pa = sup {pg | # diadic rational < a}.

It is clear that, if @ < 3, then p, < pg. Observe that, if p is a nonzero projection,
then p, = p for sufficiently small a. If not, then p =X p,, for every a and hence,
Da 3 Da-nt1_gn = Po—n+1 — pon for every n € N. This implies that there is an
infinite orthogonal family of nonzero equivalent projections of M, contradicting
finiteness of M. It follows that

inf {pg |5 € [0,1]} = 0.
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If &« € (0,1) and

P, =inf{ps|B € (o, 1]}
then

Po = Pa <P —Pa ~ Ps-a

for every 3 € (a, 1], and hence p/, = p,. Now, if p is a projection in M and

a=inf{B € [0,1]|p I ps} =sup{y€[0,1]|p, Zp}

then p ~ po. In fact, by comparability, p = pa or po 3 p. Suppose p Z pa-
Thus, there is ¢ < p, such that ¢ ~ p. Now, if 5 < « then pg < p ~ ¢ implies

Pa—q 3 Pa— DB~ Ph-a

and, since this is true for every 8 < o, po = ¢~ p. lf po, I pthen 1 —p =
1 = pa ~ P1—a, Where

l—a=f{fe[0,1}[1-pIps}=sup{y€[0,1][py T1—-p}

and hence, by the previous case, 1 —p~ pj_o ~ 1 —p, and p ~ p,. It is clear
that a dimension d has to be such that d (p,) = « for every a € [0, 1] and such a
function is in fact a dimension function. If now 7 is the unique (faithful normal)
tracial state on M, it is easily proved by induction that 7 (d,) = « for every
diadic rational o and hence, by normality, 7 (dy) = « for every a € [0, 1].

Lemma 2.4.2 If M is a II, factor and n € w, then there is an injective *-
homomorphism ® : Man — M such that Tpr 0 ® = T,

Proof. By induction onn € w. If n = 0 then M- is the trivial algebra. Suppose
the thesis is true for n and identify Myn+1 with My ® Man. Suppose p € M is
a projection such that 7 (p) = % By inductive hypothesis, there is an injective

*-homomorphism ® : M. — pMp such that 7 (@ (z)) = TMZT(I) for every
x € Man. Suppose u € M is a partial isometry whose range projection is p and
source projection in 1—p. Thus, v*u = u* (1 — p) u = p and vu* = upu* = 1—p,

u(pMp)u* = (1—-p) M (1-p)

u(pMp)u = (1 —p) Mp

and
u* (pMp)u™ =pM (1 —p).

Define now the function ¥ : My ® Myn by

v ((‘CL Z) ®x> = QW () + bul (2) u+ cu’ ¥ (@) u” + dul (@) u”
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It is easily seen that ¥ is a *-homomorphism. Moreover,

o (e((E ) =)

M (a0 (z) + bu¥ (z) u+ cu™ U (z) u* + du¥ (z)
= ary (U (z))+dra (¥ (z)u™)

= % (a+d) T, () =

< (D)t

= TMyny1 (x)

2.5 Tracial states

A tracial von Neumann algebra is a (finite) von Neumann algebra M endowed
with a faithful normal tracial state 7. A tracial von Neumann algebra can be
endowed with a scalar product (z,y),. = 7 (y*z). The completion of M with
respect to this scalar product is denoted by L? (M, 7). Define x — 7 the natural
embedding of M into L* (M, 7). Define, for z € M, 7 (z) € B (L* (M, 1)) such
that

m(x)y =1y
for every y € M. Observe that, Vz,y,z € M,

—~2 * ok

lzyll, = 7y = zy)

7 (" lz7 x| v)
* 2

2"z Iyl

[

A

and hence 7 (z) € B (L2 (M, r ) is well defined. Observe that 1 is a separating
1=

vector, i.e. 7r( ) 0 implies x = 0. In particular, 7 is injective. Moreover,

(r@)52 = (9.7

and hence 7 is a *-homomorphism. Being injective, its image is a C*-algebra
and 7 is an isometry with respect to ||-|| . I now claim that 7 is normal. By
a previous corollary, it is enough to prove that s, is weak-weak continuous.

17
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Suppose thus that (z;),.; is a net in M; weakly converging to 0. I have to prove
that (7 (2;));c; converges weakly to 0. Since (7 (2;)),c; is bounded, it is enough
to prove that ((m(2;)Z,%));c; converges to 0 for all =,y € M. We have

(m(2:)2,y) =7 (y" 2i7)

where (y*z;xz),.; converges weakly to 0, and hence by normality of 7,

~

0 =lim7 (y*zz) = lim (7 (2;) 7, )

This implies that = (M) is itself a von Neumann algebra. In fact, by (o-)weak
compactness of M; and o-weak continuity of 7, m (M;) = (7w (M)), is (0-)weak
compact and hence 7 (M) is a von Neumann algebra. This shows that M can
be regarded as a von Neumann algebra acting on L? (M, 7).

From this fact, it can deduced, for example, that the topology induced by
the ||| on M; coincides with the (o-)strong topology. In fact, regard M as a
subset of B (L? (M, 7)). If (2;);c; is a net in M converging to 0 in [|-||,, I claim
that (z;),c; converges strongly to 0 (wrt the action of M on L? (M,)). Since
(%i);¢; is a bounded net and {|y € M} is a dense subspace of L? (M, 7), it is
enough to prove that lim;cr ||2;9]|, = 0 for every y € M. We have

lim |27yl = lim|zyll,

IN

[yl tim ], = 0
Conversely, if (z;);c; converges to 0 strongly (wrt L? (M, 7)), then

Zil

ol - 1ot 0.

.
It follows that the unit ball M; of M with the metric induced by the ||-||, is a
complete metric space. In fact, suppose (z,),cy is a ||-[|,-Cauchy sequence in
M. If z € M, then
(7 (20) @) peny = (Zn®)pen

is a Cauchy sequence in L? (M, 7), and hence it converges to T2 € L? (M,
such that | TZ|, < ||Z||,. This defines a bounded linear operator T on L? (M, T
of norm < 1, such that (7 (2,)),cy converges strongly to it. Since m (M) is
von Neumann algebra, it is strongly closed and hence T' € 7 (M) and T = 7 (2
for some z € M;. We have

0 =lim

‘7‘(‘ (z2) 1 — 7 (2) TH =lim ||z, — 2|,

and hence (2,),, oy converges to z in ||-||,. Since this is true for every Cauchy
sequence in |-||,, it follows that M; is complete wrt to the distance induced by
I,

Reasoning as above, it can be prove that, if M is a C*-algebra endowed with
a faithful trace 7 such that the norm unit ball of M is ||-||,-complete, then M is

18



a von Neumann algebra and 7 is normal. In fact, if 7 : M — B (L2 (M, T)) is
the GNS representation, as before the 2-topology on 7 (M), = 7 (M;) coincide
with the strong topology. Since 7 (M), is a complete metric space wrt to the

2-norm, it has to be strongly closed. Moreover, if (z;);.; is a net in M; strongly
1
2

converging to 0 then (zl ) is a net in M strongly converging to 0. Thus,
il

2
=i ;
, im 7 (2;)

1
0 = lim Hzl’"
i€l iel

1€

and 7 is normal. As a consequence, the GNS representation 7 is normal too.
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Chapter 3

Ultraproducts

If I is a set, (Xy,dn),c; is an I-sequence of uniformly bounded metric spaces

and U an ultrafilter over I, define on [],.; X, the bounded pseudometric

“ (z,y)=U— lig} dp, (T, Yn) -

The bounded metric HZ;: Xy space obtained from [], X,, and the pseudometric

d¥, namely the quotient of L, X, with respect to the equivalence relation

X~y
i
d (x,y) =0

endowed with the metric,

d“ ([X]u ) [Y]u) =d! (%,¥),

is called the metric ultraproduct of the sequence (X,,, d”)ne ; of metric spaces
with respect to the ultrafilter & over N. It is worth noting that, if each one (or
just U-a.a.) of the (X,,d,) is complete, then HZ;Z{ X, is complete. In fact, sup-
pose (x"), ., is a Cauchy sequence in HZ;[ X, where, without loss of generality,

Vn € N, & (x,,Xn11) < 27" Define, Vn € N, if x" = [(x};)ke[]u,

A, ={kel|Vi<n,d(z},z") <27"}.

Observe that (Ay), oy is a decreasing sequence of elements of /. Define now,
for every k € I, yp, = a} if k € A,\A,q1. If k €[, Ap, then

(xZ)nGN

is a Cauchy sequence in (Xj,dj), and hence it has a limit x;. In this case,
define y = xx. Since A; € U, it is well defined the element y = [(yk)kel] of
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HZ Xp. I claim that y is the limit of the sequence (x"), .. In fact, for every
neNand k€ A,
d(yr,x) < 27"

and hence
a4 (y,x™) <27

Suppose now that (H,),cy is a sequence of Hilbert spaces and U is a non-
principal ultrafilter on N. Define

0 (Hp) ey = {(xn)neN € H H, |sup ||z.| < —|—oo} )

neN

Then, (> (H,), ¢y is @ Banach space with norm
||(xn)n€NH = sup ||:L'n|| .
neN

Define, for (z,),cn s (Un)nen € €7° (Hn)pen
<(xn)n6N b (yn)neN> = Z/{ - h”ILIl <.7Jn, yn>

This defines a sesquilinear form on ¢*° (H,,), . and a scalar product on the
quotient HZ Hy, of £>° (Hy), oy With respect to the closed subspace

{@n)nen |4 = lim 2| =0}

I claim that the scalar product space obtained in this way is a Hilbert space.
In fact, the unit ball of HZ H,, as a bounded metric space with respect to the
distance induced by the norm, is a closed subset of the metric ultraproduct
of the balls of radius 2 of the H,’s as uniformly bounded metric spaces with
respect to the distances induced by the norms. Therefore, it is complete and,
hence, HZ;L[ H,, is complete too. The Hilbert space HZ;{ H,, constructed in this
way is called the ultrapower of the sequence (H,,), y of Hilbert spaces with
respect to the ultrafilter U.

If (An), cn is a sequence of C*-algebras and U a ultrafilter over N, consider

0 (An)pen = {(xn)neN € ]___[Mn sup [|zn| < +OO}

endowed with the norm
||($”)7L€N|| = sup ||£L’nH .
n

and pointwise operations. Then, £>° (A,), oy is a Banach algebra and
G = { (@) € 6 () s [U T o]l =0
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is a closed bilateral ideal of £>° (Ay,), cy. The quotient Banach algebra (> (A,),, .y /Ju
turns out to be a C*-algebra with involution

[(@n)nen]” = [(@)nen] -

Suppose now that (M, 7,) is a sequence of tracial von Neumann algebras
and U is a nonprincipal ultrafilter on N. Then,

*

0 (M) en = {(a:n)neN c HM” sup ||zn ], < —I—OO}

is a Banach algebra with respect to the pointwise operations and the norm
||($")7L€NH = sup ”x"”oo :
n

Moreover,

Ty = {(xn)neN U — }ngﬁll lznlly = O}

is a norm-closed two-sided ideal of ¢*° (M)
(Un)pen € €° (M), then

nen- In fact, if (z,,),cn € Zy and

u—mw%%MS(wm%m)u—mwmmzo
neN n n

and hence (Tpyn),cny € Zu and, analogously, (ynTn),cny € Zu- If (Yn)pen
belongs to the closure of 7y and ¢ > 0, there is (2,,),cy € U such that
sup,, ||[Zn — ynll < 5. Thus,

€
{neN|lyal, <} > {neN|laal, < 5 } et
and, since this is true for every ¢ > 0, U — lim,, [[y,|l, = 0 and (yn),cn € Zu-
Since 7y is a norm-closed two-sided ideal, it is possible to consider the quotient

Banach algebra MY = %ﬁw)'
Define, for [(wn)neN]v

7-1/{ ([(x”)nEN}) = u - hrrln Tn (IIJ”) .
Observe that 7 is a well defined linear functional. In fact, if (2,,), oy € Zy then

‘Z/l —lim7 (x,)

= Z/l—li7rln|7'n(:rn)\
- u-pl(et)

U —lim ||z, |2 =0

IN
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Moreover, we have that

[ ([@)uen])] = [ = limra ()

U — li7rln |70 ()]

IN

U — lim ||z, |

IN

sup ||z, |
n

and hence, also
|7 ([@n)nen]) | < | [@n)nen] |

and 7 is bounded of norm < 1. Moreover, if [(mn)neN] € MY is positive, then
Ty, = Y2 + 2, with U — lim,, ||z, |, = 0 for U-a.a. n € N. Hence,

(@) = U~lmr" (@)
= U—lim7" () +U —lm7" (=)
= U~ lim|ly, | >0
If, moreover,
U —lim ||y l3 = 7 ([(2a)]) = 0

then (yn),cn € Zu and [(2,)] = 0. This shows that 7 is positive and faithful.
It is clear that 7 (1) = 1 and 7V is tracial. Therefore, 7V is a faithful normal

tracial state on HZ M,,, and define an inner product
(,y) =7 (y"x)
on HZ;: M,,, whose associated norm is
2
[z]ly =7 (272) .

Observe that the oo-unit ball of Hi{ M,, endowed with the distance induced by
the 2-norm coincides with the metric ultraproduct of the co-balls of radius 1 of
the M,,’s endowed with the metric induced by their 2-norms. Therefore, it is a
complete metric space. It follows that Hi’f M, is a von Neumann algebra and 7
is normal on M.

I will now prove that HZZ M, admits a normal faithful representation on the

closed subspace of Hi’f L? (M, T,) generated by

{ [(En)nGN] € HuL2 (Mn?T”) Mm”)nGN ere (Mn)neN } .

n

Define, for every (zn),cn:Wn)nen € €% (Mn),ens if [(Un)nen] is the corre-
sponding element in H,

ﬁ((mn)neN) [(@\”)nEN] = [(fn\yn)neN] .
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Observe that o (1) ,en) [(Un)nen] is well defined, since, if [(Fn),cn] = 0 then
U — lim, ||yn||, = 0 and also

U = lim [[znynlly < sup[|zelo U = Tim flyn]l, =0

and hence [(@)%N} = 0. Moreover, p ((2,),,cy) is clearly linear and
Hﬁ (@n)nen) [(@n) nen] H = H [(Zn¥n)nen] H

n

A

sup ||z |l oo U — lim [y, |,
k} n

@)kl Twn)nerd

) can be extended to a bounded linear operator on H of norm

Thus, p ((#n),,en
< ||(acn)n€N|| Observe also that p is an algebra homomorphism such that

<5 ((mn);eN) [(gn)neN} J [(En)neND = <ﬁ (($Z)neN) [(@\")neN] ; [(En)neN]>
= U-—lim <@ 2n>
= U T, (55n)
= U-lim7, ((Tnzn)" Yn)
= Ut (7, 7%
= <[@n)neN] 75((mn)n€N) [(/z\n)nEN]>
= (P (@n)nex)” [Gdnen] s [Biduer] )

Thus, p is a *-representation of £>° (M) on H. Moreover, if (x,), .y € Zy then,

for every (yn),en € €°° (Mn),cn»

I (@) ner) (@) = U= lim |2yl

= U- li7ILn Tn (YhTh T yn)

U — hTan Tn (xnynyzxz)

IN

. 2 2
U = lim [[yn][2, [l2n]l3

IN

sup [yl U — lim [z, |, = 0
k n

and hence p ((z),,cr) = 0. Conversely, suppose that p ((z5),cy) = 0. Thus, if
yn = 1 for every n € N,

0 = ||5([($n)neN]) [(yn)nEN]H

= U- li£n HwnynHz

U —lim||z,|,
n
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and hence (), oy € Zy. This shows that p induces a faithful *-representation
p of HZ M, = 0> (Mp),cn /ZTu on H. In order to show that p is normal, i.e.
ultraweak-ultraweak continuous, it is enough to show that the restriction of p to

the oco-unit ball is strong-weak continuous. Suppose thus that (xz)L I is a net

in the oco-unit ball of HZ M,, converging strongly (or, equivalently, in 2-norm)
to 0. Thus,

. . i 112
lzlenll (Z/{ - 1111111 ||an2> =0.

Without loss of generality, =i, € (M), for every i € I and n € N. Observe

n

that, then <[((w’ )%> N}) converges strongly (or in 2-norm) as well. If
neN] /el

(Un)pen s (Zn)pen € € (M), cn, Where yp, 2, € (M")—H then

lim (p (x') [@n)nen] » [Gadnen]) = limi — lim (%as%n)

= liienlll/{ — li’ILnT (znmﬁlyn)

IN

2
=0.
2

L L
< lime/ — lim [ ()
< sup 2] sup .|| imtd — lim || (z7)

I will now prove that, if M, is a factor for every n € N, then HZ M, is a
factor. Suppose by contradiction, that Hl; M, is not a factor, hence the center

Z (Hg Mn) of HZ;: M, is nontrivial. Since a von Neumann algebra is the norm

closure of its projections, there is a nontrivial projection p € Z (HZ Mn) Since
p is nontrivial, 7 (p) = « € (0,1). Without loss of generality, in case replacing
p with 1 — p, I can assume « € (0, %] Suppose (pn),,cy is a representative of
p. Since

T (p) =U - }zlé%ITn (pn) =Q,

e (31-3)

for U-a.a. n € N. Either 7, (p,) < % for U-a.a. n € Nor 7, (pp) > % for U-a.a.
n € N. In the first case, for U-a.a. n € N, 7, (p,) < 7, (1 — p,) and hence
pn S 1 —p, and hence there is a partial isometry u,, such that u}w, = p, and
Unt), = ¢nLpn, then 7, (uyuy, — uyuy,) > §. Definingu = [(un)neN] € HZ;: M,
one gets a partial isometry such that

then

T(Wu—uu*)=UY - li}LnTn (uytn —upuy) > — >0

|0

and uu* # u*u. The case 7, (pn) > % for -a.a. can be reduced to the first
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one replacing p, with 1 — p,. Since p = u*u is central,

uu® = uu'uu”
= upu”
= puu”
and
uu’ < u*u
Moreover,

uu® ~ u*u,
and hence, by finiteness uu* = u*u and uu* — u*u = 0. Thus,
0 = U- 1171111 |y, — up iy |y =

= u*h}}l”pn —qnll,
= L{—liTIlnT(pn—Fqn)
= 2~Z/{—li7rLIlT(pn)2a>O,

which is a contradiction.
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Part 11

Sofic and hyperlinear
groups
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Chapter 4

Nonstandard methods

4.1 Superstructures

Let S be a set of atoms, i.e. elements that does not contain elements, and are
taken as primitive (examples of S could be N or R). Now, define inductively

So =S5
Sn+1 = Sn Up (Sn)

S=UJ 5.

neN

and

We say that S is the superstructure of S. It turns out that the set S contains
virtually all mathematical objects that are needed in the practice when dealing
with S, such as functions, topologies, measures etc.

In the following, we will refer to the elements of the superstructure which
are not atoms as sets, and to elements of the superstructure which can be both
atoms and sets as entities.

Proposizione 4.1.1 Let S be a set of atoms and S its superstructure. Then

1. VneN N
Sp € S41 €8

and the S, are sets of the superstructure
Vn € N, S, is transitive, as well as S
if A is a set (of the superstructure) and B C A, then B is a set

if Ais a set, p(A) is a set

A N

if A is a family of sets, then (A is a set and, if A is itself a set, then
UA is a set
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6. if Ay, ..., A, are sets, then A1 U...UA, and A1 X .... X A, are sets
7. if 21, ...,y € §, then {x1,...,x,} is a set
8. all relations and functions on sets are sets

Proposizione 4.1.2 Ifn e N, A€ S, is a set and B C A, then B € S,,.

Proof. By induction on n. If n = 0 there’s nothing to prove. If it is true for n
and A € S;,11 = S, Up (S,) then, either A € S,,, in which case B € S,, C Sp,11
by induction hypothesis, or A € ¢ (S,,). Hence also B € ¢ (Sy,) andso B € Sp41.
|

4.2 Formulas

We assume the notion of formula of first order language as known. A formula
is called a sentence if does not contain free variables. Here, as language,
we consider the language £ of set theory {€}, with in addiction one simbol of
constant a for each entity a of the superstructure S. A formula is said bounded
if every quantifier is in the form

Vo e A

or

dre A

where A is either a constant or a variable. R

Suppose that I is a map from S to another superstructure 7' and that o
is an L-formula. In the following, we will say that « is true if « is true with
respect to the interpretation that assigns to each constant symbol a of £ the
corresponding element a of the superstructure S and that interprets the symbol
€ as the usual set-theoretic relation of membership. Also, we will say that o is
true if a is true with respect to the interpretation that assigns to each constant
symbol g of £ the corresponding element I (a) of the superstructure T' and that
interprets the symbol € as the usual relation of membership.

4.3 Elementary embeddings

Definizione 4.3.1 A map * : S — T is called a nonstandard map if
1.*8=T
2. for every infine set A € §, *A#{*a]la€ A}

3. x satisfies the transfer principle, namely a bounded formula « is true if
and only of *« is true
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Observe that, if A is a set of S and we set
A={*alac A},

then, by the transfer principle, A C *A. The second requirement for a non-
standard map ensures that this inclusion is proper.

In [?] it is shown that nonstandard maps actually exists, by means of the
construction of ultraproducts.

4.4 Standard entities

Definizione 4.4.1 An entity y of S is_called internal standard or an hy-
perextension if there is an entity x of S such that *z = y.

Teorema 4.4.2 (Internal standard definition principle) If *A is an in-
ternal standard set and « is a bounded formula with only free variable x and as
constants A, ..., A,,, then

(ze Al a(x Ay, .. A) Y =" {z € A a(z, A1, .y An)}

18 an internal standard set of =3. Conversely, every internal standard set of*/g
can be written as above.

Proof. Let
B={rzec Al a(z,A1,....A4,)}

and observe that

Vee Az € B+— a(z,A,.... Ay)).

Hence
Ve € *A(x € *B «— a(z,* A1,...," Ayn))
BCA
and
*B C *A.
Then
*A={ze"B|la(z,” A1,....," An) }
because
"A={zx e Alz=1za}.
]
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4.5 Superstructure monomorphisms

Definizione 4.5.1 A map * : S—Tisa superstructure monomorphism
if it is one to one and

1. it preserves € and =: a € A iff *fa € *A and a = b iff *a ="*b

2. it preserves finite sets: *{xy, ...z} = {*x1,..., T, }
3. it preserves finite sequences: * (X1, ..., Tn) = (*X1,....," Ty)
4. it preserves insiemistic operations: *(AUB) = *AU*B, *(ANB) =

*AN*B, *(A\B) =*A\"B, *(Ax B)=*Ax*B,*(J4) =U*A

5. it preserves sections of relations: if p € A1 X ... X A, is an n-ary relation
and i € {1,2,....,n}, then the set of x € *A; such that, for some a; €
*Al, i1 € *Ai,l,aprl S *Ai+1, Ay € *An,

*
(a17 oy Ag—1 5 Ly Qg 1y oeey a/n) € 2

is the nonstandard extension of the set of x € A; such that, for some
ar € A1, .,ai-1 € Aj_1,0,41 € Ajy1, .0 € Ay,

(a17 sy Bi—1, L, Qg 15 -0y an) S ®

6. it commutes with permutations of variables: if p € Ay X .... X A, is an n-
ary relation, o a permutation of {1,2,...,n} and 1 is the formula obtained
by ¢ permuting the variables according to o, namely (a1, ...,a,) € ¢ if and
only (%(1), ...,ag(n)) € 1, then *9 is the formula obtained by ¢ permuting
the variables according to o

It can be easily seen by transfer that a map satisfying the transfer principle
is s superstructure monomorphism. The nontrivial fact, which is proven for
example in [?], is that also the converse is true.

We can apply the internal standard definition principle to relations, obtain-
ing the following internal standard definition principle for relations.

Proposizione 4.5.2 If By,...,B,, € S and « is a bounded formula with con-
stants C, ..., C}, in with free variables x1, ..., x,, then

{(z1, ooy ) € "By X ... X *By | a(x1,.0yxy,” Cr, ...,  Cr) } =
= " {(.131,...,37”) € B X ... X Bn| 04(3;‘1, ...,J}n,Cl,....,Ck)}

is an internal standard relation. Also, every n-ary internal standard relation
has this form.

Proof. It follows from the standard definition principle and the fact that * is
a superstructure embedding. =

The following theorem can be easily proved by means of the transfer princi-
ple.
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Teorema 4.5.3 If « : S — T is a nonstandard map, A, B, f € S and fisa
function from A to B (and we write f : A — B), then *f is a function from
*A to *B, and also

1. f is one-to-one iff *f is
. [ is onto iff *f is
. dom (*f) = *dom (f)

-Vae A, " (f(a) =("f)("a)
L forallC C A, *(fic) = e
. for allC C A, " (f[C]) = ("f)[*C].

I v oA o S
3
e
S

X
~
S~—
|
*
<
e
S
—~
~
S~—

RN

4.6 Internal elements

In the following, let * : S — *S be a fixed nonstandard map.
From the transfer principle, we obtain that, ¥n € N, *.S,, is transitive

*Sn € *Spy1 € =9
and, if A € *S,,41 then A C*S,,. Let
st={"a]ae8}
be the set of all internal standard elements.

Definizione 4.6.1 An element of *S is called internal if it belongs to some
internal standard set. a set A which is not internal is called external. The set
of all internal elements of *S

J=|Jst

18 called the internal universe associated with the nonstandard map *.
Observe that all atoms are internal.

Proposizione 4.6.2 The internal universe is a transitive subset of *S. More-
over

stcgc |J oB)

BeSt

and

J = U *Sh.

neN
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ProoAf. Obviously, for all A € §, *A C J. Hence, for alln € N, *S,, C J. If
x € S, then In € w such that z € S,, and hence *z € *S,, so *z € J. This
proves that St C J. Now let x € *A € J and observe that In € w such that
A€ S,. Hence x € *A € *S,, and, by transitivity of S,, z € *S,, and x C *S,,,
which proves

Jcrsn
neN
and
Jc|Jlp(B)| BeSt}.
| ]

A formula o with constants in *S is said internal if all its constants are
internal.

Teorema 4.6.3 (Internal definition principle) a set C € *S is internal if
and only if can be written in the form

C={zeB|a(z,B1,...,B)}

where B is an internal set and « is a closed internal formula with internal
parameters By, ..., B and only variable x.

Proof. The necessity is obvious, because
A={zeAlz=2a}

For the sufficiency, let n € N be such that B and all the constants of a belong
to *5,,. The formula

YY1y Yy Y € Spdz € SV €Sy (z €z +— (x €y A (T, Y1, Uk)))

is true, because if A4, ..., A,, A are elements of S,,, then, by the comprehension
axiom, there exists the set

Al'={z e Al o(z, A1, ..., Ax) }.
Moreover, by transitivity of S,, A’ C S, and A’ € S,,11. Now, by transfer,
YY1y s Yty Y € "SIz € *SpaVz € *S (z €z — (z €y Ao (z,y1,..,Yk)))
and, in particular, for By, ..., By, B,
dz€*S,1Vz €*Sp(x €2 (z € BAp(x,B1,..., B))).

Now, B € *S,,, hence B C *S,,11 so that a z satisfying the formula above must
be
{.’L‘ €B ‘ ¥ (.’17, B17 2} Bk)}

which thus belongs to *S, 1 and to J. =
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Corollario 4.6.4 a set C € *S is internal if and only if it can be written in
the form
C={x€*B|a(z,B1,...,Br)}

where B € § and « is a bounded formula with only free variable x and internal
parameters By, ..., By.

Proof. It follows from the internal definition principle and the fact that every
internal set is contained in a internal standard set. m

Proposizione 4.6.5 The internal universe J is closed under

1. the usual insiemistic operations: union, intersection, difference, cartesian
product

2. domain and range of functions

8. section of relations, where if p is an n-ary relation and 1 < j < n, its j-th
section is the set

{IE | E!yh o Yi—1,Yj+1-Yn, (yh e Yi—1, T, Y541, 7yn) S 90}
4. image and inverse image under internal functions

5. composition of relations

Proof.
1. Let A,B € J, and n € N such that A, B € *S,,, then

AUB={ze*S, |z € AVz e B}
AnB={ze€ A|z € B}
A\B={zecA|lz¢B}
AxB={z€"(Sy x Sy)[Fx e Ay € B(z= (z,9))}
UA={ze*S,|TycA(zecy)}
(MA={ze*S,|WeA(xecy)}
are internal by the internal definition principle.
2. If f € *S,, then
dom (f) ={x € "Sn| Iy €S, 3z € f((z,y) =2)}

and
ran (f) = {z € *Sp | Iy € “Sn, 3z € £ ((y.2) = )}

3. The proof is very similar to the one of the previous points.

34



4. If A, f € *S,, then

flAl=A{y eran(f)| o e A, 3z € f((z,y) = 2)}

and
[HAl={x edom(f)| 3y € A, 3z € f((z,9) = 2)}.

5. If ¢ and 4 are binary relations (the case of k-ary relation for k arbitrary
is similar), and ¢, € *Sy, then

pop={(r,z) € (Sy xSn)| Iy € *Sn, (z,y) €, (y,2) €V }.
| |

Osservazione 4.6.6 If A C J, in general | JA ¢ J (but it does if A € J).
Also, if C C B € J, in general C ¢ J (but C C J).

We can apply the internal definition principle to relations, obtaining the
following internal definition principle for relations.

Proposizione 4.6.7 An n-ary relation ¢ is internal if and only if there exist
internal entities By, ..., B, and a bounded formula o with free variables x4, ..., Ty
and possibly some internal parameters, such that

p={(x1,....,xn) € By X ... X By | a(x1,.ccc, ) }.

Proof. It follows from the internal definition principle and the closure of J
under insiemistic operations and sections of relations. m

Note that, if 21, ..., z,, are internal, then such are {z1, ..., z, } and (z1, ..., z,),
because if k£ € N is such that z1,...,x, € *S; then

{1,z ={y € Skly=mV..Vy=az,}

and
(:El,...,l’n) S *Sk X ..o X *Sk = (Sk X ..o X Sk)

In particular, since elements of internal entities are internal, an external subset
of an internal set must be infinite.

Teorema 4.6.8 If A,B € g, then
"0(A)={M € p(*A)| M is internal}

“(B*) = {f € (*B)(*A) | A is internal}
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Proof. Let C = p(A), D = BA and n € N such that A4, B,C,D € S,,, hence
*A*B*C* D € *S,. Observe that, for all m > n,

Ve € Sp(x CA«——zeC)

and

Ve e Sy (x:A— B+—xzeD)
hence

Ve € *Sp(zr C*A«—z € *C)
and

Ve € *Sp(z:*A—-"B+«—a€™D).

Now, since *C,*D C *S,,, this proves that *C C {M C *A| M is internal } and
*D C {f:*A— *B]| fis internal }. For the converse, let M C A be internal
and m € N, m > n, such that M € S,,, so we can apply the previous formula
obtaining M € *C. Analogously for B4. m

Proposizione 4.6.9 If A is an internal set, the family p; (A) of internal sub-
sets of A is internal.

Proof. Let n € N be such that A € *S,,. We have that

pr(A) = {ze€p(*S,)| zis internal,  C A}
= {zeTp(Sn)|zC A}

is internal by internal definition principle. =

Proposizione 4.6.10 If A, B are internal entities, the set F af all internal
functions with domain A and range contained in B and the set G of internal
functions with domain a (necessarily internal) subset of A and range contained
i B, are internal.

Proof. If n € N is such that A,B € *S,, and A x B € *S,,, we have

F = {fC*S,| fisinternal, f: A— B, }
= {fe"pSn)|f:A— B}

and
G={fe"p(Sy) [Pz € p(Sn), 2 CA, f:z— B}

are internal by the internal definition principle. =

4.7 External entities
Teorema 4.7.1 Let +: S — *S be a map satisfying the transfer principle, with

S infinite. We have that = is a nonstandard map if and only if °B # *B for
some countably infinite B € S and, in this case, the following properties hold
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1. for all A € S infinite, A is external
2. for A€ S infinite, “9(A) S *p(A) S p(*A)

3. *S\S is nonempty and contains elements that are internal but not internal
standard.

Proof. The necessity of the condition is clear. For the sufficiency, it is enough
to prove that it implies the first point. If, by contradiction, ? B is internal, then
also C'=*B\"B is internal. If (b,),cy is an enumeration of the elements of B,
consider the well order relation < on B induced by this enumeration. We have
Veep(B)ycax(Vz e, y<z)
hence
Vo € *p(B)Iy € x(Vz € x, y* < 2)

so that, in particular, when x = C' € *p (B), we have a * <-minimal element y
in C'. Now, for all n € N, we have

Vz2eB(z#byAN... Nz #£ by, — by < 2)

hence, by transfer, since y # *b; for all i € N (recall that y € C = *B\? B), we
have that Vn € N, b,* < y. Now consider the function ¢ : B — B defined by

b s bn,1 if n Z 1
£ on bo if n =0
and observe that
Vo € B(x # by — x £ p(x))

hence, by transfer,

y" £ ('p) (W)
Now, it is enough to prove that (*p) (y) € C. We have

*p:*B—"*B
hence (*p) (y) € *B. Now, if (*p) (y) = *b, for some n € N we have

Vze B(p(z) =by, = 2="bpt1V2z=1b)

hence, by transfer, y = *b,, or y = *by, which can not be. Now, ?B also cannot
be internal, otherwise C' would be internal as difference of two internal entities.
If now A is another infinite set in S, let ¥ be a function from A onto B and
observe that

(A =78

since

°B

{*b| be B}
{"(f(@)]ac A}
= {(N)(Ca)lac A}
CHA-
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Thus, if “A is internal, then B is internal too, as image of an internal set
through a internal standard (hence, internal) function. As for the second point,
the first strict inclusion follows applying point one to p (A) and the second too
follows from point one and from the fact that *p (4) = p (*A) N J. As for the
third part, *S\S is nonempty from the first point and from the fact that *a = a
for all a € S. Moreover, if b € *S\S then b is not internal standard, otherwise
there would be ¢ € S such that

b="c=rc.

4.8 Nonstandard real analysis

In the following we will assume that a nonstandard map * : S — T has been
chose, with R € S.

It can be easily proven, by transfer, that *R, endowed with the operations
*+ and *- and the order relation * <, is an ordered field such that every upper
bounded internal subset has a least upper bound. Also the * map restricted
to R is an embedding of ordered field with image “R. In the following we will
identify R and its isomorphic copy “R. Moreover, *N is an ordered additive sub
semigroup of *R such that every internal subset has a minimum element. Since
* is a nonstandard map, we have R ¢ *R and N ¢ *N.

The elements of *R are called hyperreal numbers. We say that an hyperreal
number z is

e finite if there is n € N such that |z| <n
e infinite if it is not finite
e infinitesimal if 7! is infinite

The set of finite and infinitesimal numbers are denoted by Fin (*R) and
o (*R) respectively. We set also Noo = *N\N and R, = *R\ Fin (*R).

Below there are some obvious facts about finite, infinite and infinitesimal
numbers:

e Fin (*R) is a convex subring of *R

o v € R iff, ¥vn € N, [z] > n, iff, Vy € Fin(R)_, |z| >y iff 32 € "R, 2
infinite and |z| > |2| iff 3n € N, |2| > n, iff 1 is infinitesimal
e zco(*R)iff, Vvn €N, |z| < L, iff, Vy € Fin (*R),, |z| <y
Observe that Fin (*R), o (*R) R, N, R, N *R_ are external, because they
are upper bounded in *R but have no least upper bound, while R, N *R and

N, are external because they are lower bounded in *R but have not greatest
lower bound. Thus, Ry is external too, otherwise R, N *R; would be internal.
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We say that two hyperreal numbers z,y are infinitely close and we write
xx~yifz—y € o(*R). It turns out that =~ is an equivalence relation. Moreover,
for all x1,x2,y1,y2 € *R such that 7 ~ y; and =2 =~ yo, we have

1. x1 xzo =y 9o
2. x1x9 & y1ys if x1, 22 are finite

3. ;—; ~ z—; if z is finite and x5 is not infinitesimal

Every finite hyperreal number z is infinitely close to one and only one stan-
dard real number, which is called its standard part st (z). This fact is easily
proven: if we set

A={yeR|y<uz}

then A is an upper bounded subset of R and so, by the completeness of R, it
has an upper bound (in R) which must be infinitely close to x.

It is easily seen that st : Fin(*R) — R is a (weakly) order preserving
epimorphism whose kernel is o (*R). Moreover, st is external, as such is its
domain Fin (*R). For every x € *R, we denote the set of hyperreal numbers
infinitely close to x by mon (z) and call it the monad of x. It is easily seen that
mon (0) = o (*R) and, Vo € Fin (*R), mon (z) = = + o (*R). The monads are
the equivalence classes of the equivalence relation =, hence they form a partition
of *RR.

One of the most important facts in nonstandard analysis is the so called
permanence principle. If « (z) is a predicate in the only free variable z with
possibly some internal parameters, the following two facts

1. Ing € N, Vn € N, if n > ng then « (n)
2. Vv € Ny, a(v)
In fact, suppose that ng € N is such that
Vn € N, if n > ng, then a(n)
By transfer, we obtain
VYn € *N, if n > ng, then « (n)

and, in particular,
Vn € *N, if n > ng, then o (n)

For the converse, suppose by contradiction that,
Vno € N, 3n € N, n > ng and —«a (n)
By transfer, we obtain

Vno € *N, In € *N, n > ng and —a (n)
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and, in particular, taking ng € N4, we get n € N, such that -« (n), contra-
dicting 2.
The implication 1 = 2 is commonly referred to as overspill principle,
while the converse implication is referred to as underspill principle.
Applying the permanence principle to the formula

B(n)=3ImeN, m>nand a(m)
we deduce that the following two statements are equivalent:
1. Vnp € N, 3n € N, n > ng and a (n)
2. v € Ny, a (v)

It is customary to call also these implications overspill and underspill prin-

ciples.
A similar principle, the Cauchy permanence principle, holds for *R: if « (z)
is a predicate in the only free variable z with possibly internal parameters, the

statements
1. Jzg € R, Vz € R, if > z( then « (z)
2. 3¢ € *R positive infinite such that « ()
are equivalent, as well as the statements,
1. Voo € R, Jz € R, & > 20 and a ()
2. 3¢ € *R positive infinite such that a (&)

are equivalent. The proof is the similar to the one of the overspill principle.
From the Cauchy permanence principle, considering the formula 3 (z) =
« (%) we obtain also the equivalence of

1. Jzg e Ry, Ve € Ry, if 0 < = < ¢ then o (z)

2. Ve € *R positive infinitesimal, « (¢)

and of

1. Vzg € Ry, 3z € Ry such that 0 < z < z¢ and « (z)

2. Je € *R positive infinitesimal such that « (¢)
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4.9 Enlargement and saturation

Throughout this section we assume that x : S — =S is a nonstandard map, with
S infinite.

Definizione 4.9.1 Let k be a cardinal number. The elementary embedding * is
called

e a k-enlargement if, for every set A of entities of S of cardinality < k
with the f.i.p., we have ((°A # @

o k-saturated if, for every set B of internal entities of S of cardinality
< k with the f.i.p., we have (B # @.

We remark that it is customary to call an N;-saturated nonstandard map,
countably saturated.

We can give an equivalent characterization of k-enlargements and k-saturated
maps, in terms of satisfaction of relations.

If ¢ is a binary relation, we say that ¢ is satisfied by b € ran(p) on
A Cdom (p) if A x {b} C . We call ¢ concurrent on A C dom () if, for all
Ao C A finite, 3b € ran (¢) such that ¢ is satisfied by b on Ap.

Teorema 4.9.2 If k is a cardinal number, then the following statements are
equivalent

e x is a k-enlargement if and only if, for every binary relation ¢ € S with
cardinality < k, if ¢ is concurrent on A C dom (p), then there is b €
ran (*¢) that satisfies *¢ on A

e x is k-saturated if and only if for every (non necessarily internal) binary
relation ¢ of cardinality < k and for all (non necessarily internal) A C
dom (), such that, Va € A, ¢ [a] is internal, if v is concurrent on A, then
@ is satisfied on A.

For a proof, see [?].
If x is a nonstandard extension, I is an infinite set and ¢ € *I\I, then

{AcI|jie*A}
is a nonprincipal ultrafilter over I. If x is a (2‘1 ‘)Jr—enlargement, then every

nonprincipal ultrafilter U over I is of this form. In fact, if ¢ € (°U, then
u=u,.
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Chapter 5

Sofic and hyperlinear
groups

5.1 Standard definition and characterization

A bounded bi-invariant metric groups is a group which is also a metric space of
diameter < 2 such that the multiplication and inverse functions are continuous,
and the metric is invariant with respect to right and left multiplication.

If n € N, denote by S,, the permutation groups of n and by U, C M,, the
group of unitary n X n matrices over C. If 0,7 € .S,,, define

Hienlo@#7(@)}

d(UvT): n

If A, B € U, define

d(A’ B) — \/Zl<1 _7<7, 2] B i,

B \/ B)' (4~ B))

IIA - B,
vn
It is easily checked that S,, and U,, are bounded bi-invariant metric groups of

diameter 1 and 2 respectively.
The function from S,, to U,, sending ¢ to the element A, of U, defined by

2

Ay (€:) = eq(s
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if {eg,..,en—_1} is the canonical base of C", is a homomorphism such that

{ienlo(@)# ()}

d(o,7) -
_ ’{iEn}(T_la)(i)#iHﬁ
_ tr(a— AT—:)
_ tr((lfATfla) + (A1)
_ i ((As - A;)*Q?AU —A.)

1
= Ed(AaaAT)Q

If G is a discrete group, I' is a metric group, ¢ > 0 and F' C G a finite subset
of G, a (F,e)-almost embedding of G into T" is a function ¢ : FF — T" such that

o for every g,h € F, if gh € F,

d(p(gh),p(9)p(h)) <e

o ifeqge F,
d(p(eq) er) <e

o for every g, h € F distinct,
1.
d(p(9), ¢ (h)) 2 Sdiam (T

Definizione 5.1.1 A discrete group G is called sofic (resp. hyperlinear) if, for
every F' C G finite and € > 0, there is n € N and an (F,¢)-almost embedding
p: F— 8, (resp. ¢ : F = U,)

Observe that every sofic groups is hyperlinear. It is not known if the reverse
implication holds.

For example, every residually finite group is sofic. Remember that a residu-
ally finite groups is a group that admits a separating family of homomorphism
into finite groups or, equivalently, into finite permutation groups. In fact, sup-
pose G is residually finite and F' C G is finite. If « € (0, 1), there is N € N such
that, for every g,h € F with g # h, there is an embedding ¢, ;, : G — Sy such

that d (¢, 4 (9),¢,n (R)) > 1. Define now,

®:G— [ Sv=Srgr-yy
(g:h)EF,g#h

by
®(2) (9,h) = ¢gp ().
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Observe that ® is a homomorphism and, if g # h € F,

N |

d(®(g),®(h) > d(pys(9): e (h) >

5.2 Nonstandard characterization

If (T'n),cy is a sequence of bounded bi-invariant metric groups and U is a ul-
trafilter over N, define [, YT, as the quotient of [], I', with metric

d(a,b) = liTILn dp (ap, by)

with respect to the normal subgroup

{aeHFn|d(a,e):0}.

If * is a nonstandard extension and v € *N, define I, as the value at v of the
nonstandard extension of the sequence (Fn)nGN and '), as the quotient of T',
with respect to the normal subgroup

{gely|d(g,0)~0}

Lemma 5.2.1 If v € *N and U, = {ACN|ve*A}, then HZ’ T, can be
embedded in f,,

Proof. Define the function ¥ from HZ: T, to I', sending [(9n) pen] to [gu]-
Observe that ¥ is well defined and one to one. In fact, [(g,)] = [(9,)] iff,
Ve >0, {n e N|d(gn,g,) <ec} €U iff, Ve > 0, d(g,,9,) < e iff d(gv,g,) ~ 0
iff [g,] = [g,]- Clearly, ¥ is a homomorphism. ®

It is clear that a group G is sofic (resp. hyperlinear) iff every finitely gen-
erated subgroup of G is sofic (resp. hyperlinear). Thus, there is no loss of
generality in considering only countable groups.

Teorema 5.2.2 If G is a countable discrete group and * is a ¢ -enlargement,
the following statements are equivalent

1. G 1is sofic
. G can be embedded in §V for some v € Ny
. G can be embedded in S, for every v € Ny

2
3
4. G can be embedded in HZ;L{ Sy, for some nonprincipal ultrafilter U
5. G can be embedded in Hz;f Sy for every nonprincipal ultrafilter U

Proof.
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1 = 5 Consider, a monotone decreasing vanishing sequence (&,) of positive real
numbers, an increasing sequence (F,), oy of finite subsets of G such that
U,, Fr» = G and functions ¢,, : G — S, such that ¢, is an (F},, ey, )-almost
homomorphism. If I/ is a nonprincipal ultrafilter over N, define

@:GHH“S,L

by
@ (9) = (¢n (9)) pen

If g,h € G and € > 0, there is N € N such that ey < € and {e,g,h} C Fy.
Thus, for every n > N,

d (¢, (gh), ¢, (9) ¢, (h)) <e

and
d(p,(e),e) <e
and, if g # h, 1
(¢ (9) 20 (B) 2 5
Thus,
d(®(gh),®(9) @ (h)) <e
and

Moreover, if g # h, then

Since this is true for every € > 0,
®(gh) = @ (9) @ (h)

and
de)=¢€

5 = 4 Obvious

5= 3 If v € N, consider the ultrafilter ¢,. Thus, G can be embedded in
Hi’:” Sy, and, by the previous lemma, HZ:” Sy can be embedded in S,

3 = 2 Obvious

2 =1 Suppose F is a finite subset of G and ¢ > 0. Consider an embedding
® : G — S,, which induces a function ® : G — S, such that, for every
g, heF, d(®(gh),®(9)®(h)) =0,d(P(e),e) ~ 0 and, for every g,h €
F,g#h,d(®(g),®(h)) is not infinitesimal. Define

n=inf{d(®(g),®(h))|g,h € F,g#h}
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and observe that 7 is a positive non-infinitesimal hyperreal number. Pick
N € N such that (1 — 77)N < % and consider the function ¥ : G — S,],V ~
S, ~ defined by

If g, h € G, then
d(W(9), W (h) =1—(1—d(®(g),® ()"

Thus, if g, h € F, then

and, if g # h, then

d(¥(g), T(h)=1-1-d(®(g),2M))" >21-1-n" >

l\D\»—~

Consider thus the formula Jv € *N, 4f : F — S,, such that, for every
g:h € F, d(f(gh),f(g)f(h)) < & d(f(e),e) < ¢ and, if g # h,
d(f (g),f(h)) > % By transfer, one gets, In € N, 3f : F — S, such
that, for every g,h € F, d(f (gh), f(g9) f(h)) <e,d(f(e),e) < € and, if

g#h,d(f(g),f(h) > 3. Since this is true for every e > 0 and F C G
ﬁnite7 G is sofic.

In the same way, it is proved the following

Teorema 5.2.3 If G is a countable discrete group and * is a ¢ -enlargement,
the following statements are equivalent

1.

G is hyperlinear

. G can be embedded in (7,, for some v € N,

. G can be embedded in (7,, for every v € Ny

2
3
4.
5

G can be embedded in HZ U, for some nonprincipal ultrafilter U

. G can be embedded in HZ;L{ U, for every nonprincipal ultrafilter U

These theorems justify the following

Definizione 5.2.4 If U is a nonprincipal ultrafilter over N, the ultraproduct
Hz;f Sn (resp. HZ U, ) is called a universal sofic (resp. hyperlinear) group.
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Part III

Continuum logic and the
order property
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Chapter 6

Logic for metric structures

6.1 Languages for operator algebra
A language L consists of

e a set S of sorts, whose elements are meant to represent spaces. To every
S € §, it is associated a symbol dg and directed set Dg of domains. For
every D € Dg a natural number Kp is given

e sorted function symbols f: 5] x ... xS, — S together with, for every
choice of domains D; € Dg, for i € {1,2,...,n}, and every j € {1,2,...,n},

a domain D?“'"’D" € Dg and a real valued function of real variable

6?;’“"]3" vanishing in 0. A zerary sorted function symbol stands for a

sorted constant symbol.

e sorted relation symbols R on S; X .... x S), together with, for j €
{1,2,...,n} and every choice of D; € Dg, for i € {1,2,...,n}, a real valued

D,

. . Di,... ” Dy,....D
function of real variable § le’ 7" and a positive real number Nz

An L-structure M is a function that assigns, to every sort S, a metric space
M (S) with metric d¥ and, to every domain D relative to S, a subset M (D)
of M (S) complete with respect to dg of diameter < Kp, in such a way that,
if D < D', then M (D) C M (D’), and the family {M (D) : D € Dg} is a cover
of M (S). Moreover, to every sorted function symbol f : S; x ... x S, — S
is associated a function fM : M (S;) x ... x M (S,) — M (S) such that, for
every choice of D; € Dg, for i € {1,2,...,n}, the restriction of f to M (Dy) x
..M (D,,) is uniformly continuous with modulus of continuity relative to the

j-th variable 5?;""’13"

every sorted relation symbol R it is a associated a real valued function R on
M (S1) %....x M (S,,) such that, for every choice of D; € Dg,, ¢ € {1,2,..,n}, the
restriction of R to M (D1) X ... x M (D,,) is uniformly continuous with modulus

and has image contained in M (DJ?I""D” . Finally, to
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of continuity (533’""’[)" relative to the j-th variable, and bounded in absolute

value by Ngl’“'"D".

In the following, I will use the following notation. If £ is a language, a
multisort S indicates a finite sequence (S, ..., S,,) of sorts of £. A multi-domain
D of multi-sort S is a finite sequence (D1, ..., D,,) of domains such that D; € Dg,
for every 1.

For example, the language Lo of C*-algebras consists of two sorts U (for
the C*-algebra itself) and C (to represent a copy of the complex numbers). The
domains relative to U are {D,,}, oy, to be seen as the balls of radius n € N, and
the domains for C are {B,}, oy, to be seen as the discs of radius n € N. The
sorted relation and function symbols are:

e the constant 0 in U and the constants 1,7 in C

e a binary function symbol f : C x U — U, to be interpreted as the multi-
plication by scalars

e a unitary function symbol * : U — U, for the involution of U, and : C —
C, for the complex conjugation

e binary function symbols +,-: U x U — U and +,- : Cx C — C

The metric symbols dy and d¢ relative to U and C should be seen as the
norm distance and the Euclidean distance respectively. It is straightforward to
write down range domains and moduli of continuity § associated to the sorted
function symbols and the domains.

The language L% for tracial von Neumann algebras consists of the sorts
U and C, together with domains {D,,}, .y and {B,}, oy, Where D), has to be
interpreted as the ball of radius n in operator norm. The metric symbols dy;
relative to U has to be seen as the 2-distance induced by the trace. The sorted
relation and function symbols are, in addition to the previous ones,

e the constant 1 in U
e a function symbol 7 : U — C for the trace

e a unary relation symbol Re on C for the real part

The range domains and moduli of continuity are easily determined

It is worth observing that the operator norm is not in this case part of the
language, and is not even definable, since it is not continuous with respect to
the 2-norm.

The language for bounded bi-invariant metric group has only one sort S
and a unique domain D = S. There is a binary function symbol -, for the
operation, a unary function symbol j for the inverse and constant symbol e
for the multiplicative identity. The metric is bounded by 2 and the uniform
continuity module for the operation in each variable and for j is the identity
function.
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6.2 Formulas, models and theories

We suppose that, for every sort S € S, we have variables of sort S. A variable
of sort S is also a term of sort S. If f: S5 X .... x S, — S is a sorted function
symbol and if ¢y, ..., ¢, are terms of sort Sy, ..., Sy, then f (¢1,...,t,) is a term of
sort S. If R is a sorted relation on Sy X ... x S, and ty,...,t, are terms of sort
S1,...y Sp, then R (tq,...,t,) is a basic formula. If ¢, ..., ¢, are formulae and
g : R™ — R is a continuous function, then f (¢4, ..., ¢, ) is a formula. Finally, if
© is a formula containing a variable z of sort S and D € Dg, then inf,cp ¢ (x)
and sup,cp ¢ (x) are formulae. A variable z of sort S in a formula ¢ is called
bounded if it is preceded by inf,cp or sup,cp for some D € Dg, free otherwise.
A formula without free variables is called a sentence.

The interpretation ¢ of a formula ¢ in a structure M is defined in the
obvious way. If ¢ is a sentence, then ¢ is a real number. The set of sentences ¢
such that @™ = 0 is called the complete theory Th (M) of M. Since, for every
sentence ¢ and every real valued continuous function of real variable g, g () is
a sentence, the complete theory of M determines ™ for every sentence . Two
structures M and N are said to be elementarily equivalent if Th (M) = Th (N).

It can be proved by induction on the complexity of a formula ¢ with free
variables T = (z1,...,,) of multi-sort S = (S1,...,5,) that, for every multi-
domain D = (Dy, ..., D,,) relative to S, there is a positive real number N¢D and

a real valued function of a real variable 65 vanishing in 0 such that, for every
L-structure M, the restriction of @™ to M (Dy) x ... x M (D,,) attains values
in [—Nf , Nf } and admits 55 as modulus of continuity.

A theory T will be a set of formulae. We say that a structure M is a model
of T, and write M =T, it T C Th (M).-

If M is an L-structure and A C M define the language £ (A) as the language
obtained from £ adding a constant symbol a of sort S; in D for every i €
{1,2,....n}, D € Dg, and a € A; N M (D). A formula ¢ in the language
L (A) is called a £-formula with parameters from A. Denote by (M, a),. 4 the
L (A)-structure obtained by M interpreting a as a for every a € A.

A map © : M — N is an elementary embedding if, for all formulae ¢ with
parameters in M, v™ = " 0 ©. It can be proved that every isomorphism
© : M — N is an elementary embedding and every elementary embedding
© : M — N is an isomorphism onto its image. None of these implications
reverses in general.

6.3 Axiomatizability

A category C is said to be axiomatizable if there is a language £, an L-theory
7 and a set of conditions X such that the category C (7,X) that has as objects
the models of 7 and as morphisms the maps between models that preserve all
the conditions in ¥, is equivalent to C.

A class of algebras is said axiomatizable is such is the category that has

50



the isomorphism class of algebras as objects and morphisms of algebras as mor-
phisms.

As example of possible choices of X, if 3 is the set of all conditions, then the
morphisms in C (7, Y) are exactly the elementary embeddings. If ¥ is the set of
conditions ¢ < r and r < ¢ for ¢ basic formula, then the morphisms in C (7, X)
are the isomorphisms onto the image, and if ¥ is the set of conditions ¢ < r for
© basic formula, then the morphisms in C (7, X) are the homomorphisms.

Observe that, if 7,0 are terms in a language £ of same sort .S, the axiom
scheme

sup ds (r (2) 0 ())

xzeD
for D € Dg, forces in any model to be 7™ = o™ on M (S). Analogously, if
p, 1 are formulae with free variables z1, ..., x, of sort Si, ..., Sy, then the axiom
scheme

sup sup ... sup max (0, (¢ (z1,..,2,)) — @ (T1,..,24))
z1€D1 z2€D2  ©,€D,
where D; ranges in Dg, for every i € {1,2,...,n}, forces to be ¢ < ¢ on M (S7) x
e X M (Sp)

I will consider now the axioms for C*-algebras, on the language Lc+ previ-
ously introduced. It is not difficult to give axioms that ensure that U is inter-
preted as a C*-algebra. In order to ensure that, Vn € N, D,, is interpreted as
the n-ball of U, one has to add the following axioms (writing ||z| for dy (,0)):

® sup,cp, ||zl <1 (D is contained in the unit ball)

o for every n € N, sup,cp infyep, du (b ) = 0 (the open unit ball is

_a
> lall++

contained in D)
e for every n € N, sup,cp infpep, dy (%a, b) =
e 0(:D, C Dy)
e for every n € N, supye p, infaep, du (£a,b) =0 (2D, is dense in D;)

The first two of these axioms implies that D, is interpreted as the unit ball,
and the remaining two implies that D,, = nD; is interpreted as the n-ball. In
order to ensure that C is interpreted as the field of complex numbers with the
Euclidean distance and, for every n € N, B,, is interpreted as the n-disc of C,
to the same axioms we enlisted for U one has to add 2 + 1 and

sup inf inf min {|A+ |u[ 1+ [w[il, X = [pl 1+ vl A+ |p] =[]l A = [ul 1= |v]d},
\€B; HEB1 VEDB>
ensuring that {1,4} is a base for C as a vector space over R.

It is not difficult to check now that there is an equivalence of categories

between the category of isomorphism classes of C*-algebras and the category
C (7¢+,X), where o+ is the theory of C*-algebras we have just defined and ¥
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is the set of conditions of form ¢ < r for ¢ formula and r real number (ensuring
that morphisms in C (7¢+, X) are *-homomorphisms of C*-algebras).

I'll consider now that axioms for von Neumann algebras. As for C*-algebras,
it is not difficult to write axioms that ensure that U is interpreted as a tracial
*_algebra (it is worth reminding here that the operator norm is not part of the
structure nor even a definable function). The axiom scheme

sup (Re <T (a*a) — dy (a, 0)2>)2

a€D,

for n € N forces
2 *
lla||5 = tr (a*a),

where ||al|, = dv (a,0).
In order to ensure that U is a von Neumann algebra and D, is interpreted
as the operator norm unit ball, one has to add the following axioms

e for every n € N,

sup sup max {0, [[az|, —n |[z],}
a€D, x€Dy

forcing left multiplication by a € D,, to be a bounded linear operator on
U of norm <n

e for every n € N,

sup inf inf inf b —d*d b*h—1
Sup inf inf dngn(lla clly + [l (Pl Il2)

expressing the fact that every a € U has a polar decomposition in U

a+b
2

sup sup inf
a€D; beDy ceDy

c—

2

ensuring that D; is convex

I now claim this theory 7,4 defines exactly the category of tracial von Neu-
mann algebras.

In fact, if M is a model of 7,7, then M (U) is a pre-Hilbert space with
respect to the scalar product (z,y),. = 7 (y*z). Moreover, left multiplication by
a € D, is a bounded linear operator of norm < n. Moreover, for every x,y € M,

(a*z,y), = 7(y'a’z)
= 7 ((ay)" x)
= <$aay>7—

which shows that the adjoint of the left multiplication by a is the left multipli-
cation by a*. Thus, it is defined a faithful *-representation 7 of M (U) on the
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Hilbert completion L? (M (U),7) of (M (U),{-,-).). The restriction of 7 to D
is a homeomorphism with respect to the 2-norm topology on D; and the strong
topology on B (L* (M (U),7)). In fact, if (z;),c; is a net in Dy converging in

2-norm to 0 then, for every x € M (U), since ||z|, = ||z*||y, if x € Uy,
Iziull, = [lu*z ],
< nllFl,

= nfal, — 0

Conversely, if
(7 (2i))ier
converges to 0 strongly, evaluating in 1 one gets lim;es [|z;, = 0. Since D is
complete in 2-norm and is mapped homeomorphically onto the norm unit ball of
m (M (U)), it follows that the latter is strongly closed and hence 7 (M (U)) (and
M (U) as well) is a von Neumann algebra. It remains to show that, ¥n € N,
D,, is interpreted as the operator norm n-ball of M (U). Since we still have
the axioms that guarantee that D, = mnD;, it is enough to prove that D;
is interpreted as the operator norm unit ball. By the first of the additional
axioms, D, is contained in the operator norm unit ball. By the second of the
additional axioms, every unitary element belongs to D; and D; is convex. By
the Russo-Dye theorem, every element of the open operator norm unit ball is
convex combination of unitaries. This implies that open operator norm unit
ball is contained in D;. By completeness of Dy, this is enough to conclude.
In order to axiomatize the class of tracial factors, consider the terms

§(x) = [lz =7 (x) 1],

and

n(z) = sup [|[=,9]l,,
yeDy

where [x,y] = zy — yx is the commutant of x and y. Thus, if one adds to the
axioms for von Neumann algebras the axiom

sup max {0, (¢ (@) = n(z))}

which implies £ < 7 in a model, then one gets an axiomatization of tracial von
Neumann factors. In fact, if (M, ) is a tracial factor and x € M is an element
of operator norm < 1, then, by the Diximier property of the trace in a factor,
for every € > 0 there is a convex combination 2?21 Ajujzu; such that

n
T(z)1— Z Njujzui|| < e
j=1
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and hence

§(x) = o —7(2)1l,

n
*
e+ :rfg )\jujxuj

<
j=1 9
n
< et ) Nl - wa]),
J=1
n
= e+ > ]l
J=1
< e+ sup [z yll, =n(z) +e
yEDy

Since this is true for every € > 0, the thesis is proved Conversely, assume
& (z) < n(z) for every z in the operator norm unit ball of a von Neumann
algebra M. If M is not a factor, then there is a nontrivial central projection p
in M, with 0 < 7 (p) < 1. For this element, we have 7 (p) = 0 and

£p) = lp—rm1)3

= T(p—2T(p)p+T(p)21)

(
(

1
2

Nl

™ (p) =27 ()" + 7 (0)°)

contradicting the assumption.

In order to axiomatize I factors, it is enough to require the trace to attain
an irrational value on some projection. Fix thus an irrational number 3 € (0, 1)
and consider the axiom

aien[f)1 max (Ha*a — (a"‘a)2H2 S| (@*a) — 6|)

I claim that adding this axiom to the list of axioms for tracial factors gives
an axiomatization of Il factors. In fact, if M is a II; factor, then it has a
projection p such that 7 (p) = d(p) = 5. Conversely, if a finite factor is not
114, then it is of type I,, for some n € N, i.e. it is isomorphic to M,,, and every
nontrivial projection in M, has dimension % for ke {1,....,n—1}.

The axioms for bounded bi-invariant metric groups are the usual axioms for
groups, with the addition of

sup (|d(zz,y2) — d(z,y)| + |d (22, 2y) — d (2,y)])

z,y,z€S

for the by-invariance of the metric.
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6.4 Metric ultraproducts

Suppose L is a language as defined above, (M;),.; is a sequence of L-structures

and U is a nonprincipal ultrafilter on I. The ultraproduct M = HZ;IE 1 M; will

be a structure over the same language L. For every sort S € S of L, consider

)?g’ = {(ai)iel € HMi (S) | for some D € Dg, for U-a.a. i € I, a; € M; (D) }
iel
awith the pseudometric

ds ((ai)icr» (bi)ses) =U — lLleHI1 dy" (ai,b;).

Define the interpretation of the sort S in H?E ; M; as the metric space Xg’
obtained from X% and the pseudometric dg. If D € Dg, define

{[(ai)iel] | for U-a.a. i € I, a; € M; (D)}

Being M (D) the metric ultraproduct of the complete metric spaces (M; (D)), ¢,
M (D) is a complete metric space. If f: 51 x ... X S,, — S is a sorted function
symbol, the interpretation of f in M is the function from M (S7) X ..... x M (Sy,)
to M (S), defined by

M ({(ag)ief} s [(a?)iel]) = {(fM (a,},...,a?))ia]

If R is a sorted relation symbol on Sy X ... X S, the interpretation of R in M
is the function from M (S1) X ..... x M (Sy,) to R defined by

RM =y — lim RM:
el

Observe that, by the boundedness and uniform continuity requirement on RM:
and fMi restricted to domains, RM and fM: are well defined and satisfy the
same boundedness and uniform continuity requirements.

If M; = M for every i € I, the ultraproduct is called ultrapower of M and
denoted by MY.

Teorema 6.4.1 (Los) If (M;),.; is a family of L-structures, U is a ultrafilter
on I and M = HZ:{ M;, then

1. for every L-formula ¢ with free variables x1, ..., x, of sorts Si,..., Sy,
M LM,
M ([(@1)iey] s [@0)ier] ) =t = lim o (a0

2. every L-sentence 1,
™ =uU — lim ™
iel
Proof. The proof of point 1 is easily done by induction on the complexity of
the formula. Points 2 follows. m
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6.5 Character density of languages

If £ is a language, 7 is an L-theory, ¢, 1) are formulae with free variables T of
sort S and D = (D, ..., Dy,), where D; € Dg, Vi € {1,2,...,n}, we set

d5 (p,v) =sup{|¢ (@) — v (@)l [ae M (D), M =T}

This defines a pseudo-metric on the set of such formulae, whose character density
is denoted by x, (D, T). The character density of the L-theory 7 is

xe (T)=> x.(D,T).
D

If 7 is the empty theory, d% is denoted by dp, X~ (E, T) by X (E) and x, (7)
by x,. We call x, the character density of the language.
The character density of an L-structure M is

X (M) =" x (M(S))
S

where S ranges over all sorts and x (M (S)) is the character density of the metric
space (M (S),d¥).

Lemma 6.5.1 (Tarski-Vaught criterion) If N C M are L-structures and,
for every choice of domains D of sorts S, there is a set Fp5 ofL-formulae which
is dense in the set of formulae with parameters in N and free variables T of
sorts S with respect to the metric dr such that, for every ¢, € F

Eei]\rrl(fﬁ) pla) = Ee]i\?fﬁ) 4 (5) ’

then N < M

Proof. By density of 77, the condition holds for every formula with parameters
in N and free variables Z of sorts S. The fact that o™ = ¢ for every such
formula follows now by induction on the complexity. m

Teorema 6.5.2 (Downward Lowenheim-Skolem) If M is an L-structure
and X C M, then there is N < M such that X C N and x (N) < x, (Th(M))+

X (X)

Proof. For every choice of domains, fix a set F7 of formulae which is dense in
the set of formulae with parameters in N and free variables T of sorts S with
respect to the metric dp, in such a way that

5| < xe (Th(01))
D
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Define recursively sets (Xy,), cyy and (E, ), cy such that, Vn € N, E,, is dense in
Xn, X (Xn) < xg (Th(M)) + x (X) and, for every positive rational number r,
k € N, domain D and formula ¢ € F5 with parameters from |J in By if
inf @) <r
zeM(D)
then there is b € X,, such that

@(E)ST—&-%

By the Tarski-Vaught criterion, the closure of | J,, X, is an elementary submodel
of M containing X with character density at most x (X) + x, (Th(M)). =
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Chapter 7

Stability

7.1 Types

If £ is a language, " (Z) < r" is a condition and D a choice of domains com-
patible with T, we say that it is satisfied in an L-structure M by a € M (E) if
oM (@) <r. A set X (%) of such conditions is satisfied by @ € M if every element
of ¥ (Z) is satisfied by @ € M (D).

Proposizione 7.1.1 (Compactness) If ¥ () is a set of conditions, TFAE

1. 3(7) is D-satisfiable, i.e. there is an L-structure M and @ € M (D) that
satisfies 2 (T)

2. ¥(%) s finitely D-satisfiable, namely every finite subset of ¥ (%) is D-
satisfiable

3. ¥(%) is finitely approvimately D-satisfiable, namely for every finite subset
F of ©(Z) and every € > 0 there is an L-structure M and @ € M (D)
such that, for every condition "o <r" in F, @ satisfies "p <r+¢e"

A satisfiable set of conditions ¥ (Z) is called a partial D-type. If M is an
L-structure and @ € M (ﬁ) satisfies every condition in 3 (Z), then @ is called a
realization of ¥ (Z) in M. A maximal partial D-type is called a D-type. If M
is an L -structure and @ € M (E),

tpM @) = {"p <r"| oM (@) <1}

is the type of @ in M. It is easily seen that this is a type. Conversely, by
compactness, every type has this form. More precisely, if p is a D-type and @ is
a realization of p in M, then p = tp™ (a@).

Define S, (ﬁ) the set of D-types in the language £. If ¢ is a formula,
then ¢ (@) does not depend on the particular realization @ of p in M chosen.

Therefore, it is well defined the real number ¢? = ¢ (@), where @ is a realization
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of pin M. Thus, any formula can be seen as a function from S, (E) to R.
Moreover, two formulae are equivalent iff the functions they define are the same.

If "o < r" is a condition, denote by [ < 7] the set of D-types that contain
the condition ¢ < r or, equivalently, such that P < r. Analogously, if %
is any partial type, define [¥] = {p S (E) |¥ C p}. The family of such
sets is a family of closed sets for a compact Hausdorff topology on S, (5),
called the logic topology, which is the weakest topology making all the formulae
continuous. Moreover, a function turns out to be continuous iff it is a uniform
limit of formulae.

On S¢ (b) one can define also a metric d, setting

d(p,q) = inf {dM (a, 5) |E,E € M satisfy p, q respectively}

where the infimum is actually a minimum by compactness. The topology in-
duced by d is finer than the logic topology. In fact, suppose (p;);c; is a net
in [¢ < 7] converging to p € Sz (D) in this metric. If € > 0, thereisa § > 0
such that, for every L-structure M, if d™ (@,b) < § then |g0M (@) — oM (B)‘ <e.
Thus, if ¢ € I is such that d (p;, p) < ¢ then, if M is an L-structure and @;,a € M
satisfy p;,p in M and d™ (a;,a) < 0, then £ > | (a;) — M (@)| = | — ¢7|
and hence, since pP* <1, P <r 4. Since this is true for every € > 0, P <1
and hence p € [p < r|. This shows that [p <] is closed in the metric d. If F'
is a logically closed subset, then F* = [, .y {q eN ’ IdpeF, dpq) <e+ %}
is still logically closed. Thus, S, (E) is a so called compact called topometric
space.

If T is a satisfiable L-theory, then S, (ﬁ, T) is the closed subspace [T] of
Se (E) of the types that can be realized in a model of T' or, equivalently, that
contain T'. If M is an L-structure and A C M, the set S, (ﬁ, A) of types over

A is by definition Sz(a) (D, Th ((M,a),c4))-

7.2 Saturation

If  is a cardinal, an L-structure is k-saturated if, for every A C M of character
density (or, equivalently, cardinality) < , every type over A is realized in M.
As usual, Ni-saturation is referred to as countable saturation. An L-structure
M is said saturated if it is x (M )-saturated, where x (M) is the character density
of M.

The classic Keisler theorem on ultraproduct holds without changes for the
logic for metric structures.

Proposizione 7.2.1 If L is a separable language, (M;),.; is a family of L-
structures and U is a countably incomplete ultrafilter over I, then the ultraprod-
uct M = HZZ-/IGI M; s countably saturated

Proof. Suppose p is a D-type over A C M, where A has cardinality < Ry.
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Observe that

<H“Mi,[<ai>iez]u>[ | = 1" 000, e
(a’i)ielueA

i€l icl

Thus, replacing £ with £ (A), where [(ai)iel]u € A is interpreted as a; in M;,
we can suppose A = @&. Suppose ¢ = {"p,, <r,"|n € N} is a countable dense
subset of p. In order to show that p is realized in M, it suffices to show that
q is realized in M. Consider a sequence {I,}, ., of elements of I such that

In =1, I,41 C I, € U for every n € w and (),,c [ = @. Define recursively
Jo = Ip = I and, for every n € N,

. - 1
M; #gggmax{lgljagn <<pj (b) — <rj + n)) ,0}} ceu

Define now, for every i € I,

Jn — {Z S In m ']n—l

n(i)=min{n €wl|i¢ Jp41}.

If i € I and n (i) > 1, define b (i) € M; (D) such that

ez, (9 00) = (0 55)) o}

Define b = [(Bl) } € H?GI M;. If n € Nand i € J, then n (i) > n and hence

icl

M, b= max {f??é% <@j (b)) - <rj + Z)) ,0}

Since J,, € U, this implies that
HMMI = max { max (¢, (b) — r-—i—g 0
: 1<j<n 7Y Tom))’
el
and, since this is true for every n € N|
u _
H M; = max {ryr}gﬁ){( (¢; (b) —75) ,0}
el
]
Proposizione 7.2.2 If L is a language and M, N are two elementarily equiva-

lent saturated L-structures of the same character density k, then M and N are
isomorphic

Proof. Suppose {a;},_, and {b;},_,. are dense subsets of M and N respectively.
If 1 < K is an ordinal, write ¢ = j + n where j is a limit ordinal and n € w. Say

that i is even (resp. odd) if such is n. Now I define recursively sequences {a;}, .
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and {E} such that, for every ¢ < k, if i = j+2n is even, then a2, = @jin,
<K

if i =7+ 2n+ 1 is odd, then gj+2n+1 = bj4+n, and such that, for every i < &,

the structures (M, a;) and (N , EJ) ~are elementarily equivalent. Suppose
J

J<i <i

these sequences have been defined for i < A = § 4+ n, where § is a limit ordinal
and n € w. Suppose without loss of generality that n = 2m is even. Define
@) = asm and consider the complete D-type p of ay € M (D) over {a;}, . If
q is the D-type over {R} obtained by p replacing every a; with gi7 then q is

i<A
a complete D-type and, by saturation of N, there is by € N (D) that satisfies
q. Define then by11 = bsym € N (D) and find a1 € M (D') as before. This
concludes that recursive construction. Now, since the structures (M, a;), ., and
(N ,Ej) g are elementarily equivalent, the function ® sending a; to E is an
J<K

isometric isomorphism, that can be extended to an isometric isomorphism from
M onto N. m

Corollario 7.2.3 IfCH holds, ultrapowers of elementarily equivalent L-structures
of character density < ¢ are isomorphic

7.3 Stability

If X is a cardinal and £ is a language, a theory 7 is said to be A-stable if,
for every model M of 7, every A C M of density character (or, equivalently,
cardinality) < A and choice of domains D, the space S, (E, A) of complete D-
types over A C M has character density < A with respect to the metric topology.
A theory is stable if it is A-stable for some A, unstable otherwise. Observe
that, by Lowenheim-Skolem, if £ is separable, 7 is A-stable iff, for every model
M of T of density character (or, equivalently, cardinality) < A and choice of
domains D, S, (ﬁ, M ) has character density < .

If 4 (%,7) is an L-formula, where Z and 7 are of the same sort S, D is a
choice of domains compatible with Z, € > 0 and M is an L-structure, define the
following relation *5,5 on M (g):

a<D.b
iff
™M (a@,b) € [0,¢)

and
M (b,a@) € (1—¢,1].

Denote <EO by <E.
An L-structure has the order property if there is a formula ¢ (Z,7) and a
compatible choice of domains D such that M (5) contains an infinite <£ -chain.
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A sequence (M), of L-structures has the order property if there is a
formula ¢ (Z,7) and a compatible choice of domains D such that, ¥n € N,

4N € N such that, Ym > n, M,, contains a %E—Chain of length m.
An L-structure M has the approximate order property iff there is a for-
mula ¢ (Z,7) and a compatible choice of domains D such that M (D) contains

arbitrarily long finite -<?—chains.

Observe that, for every n € N, "M (E) contains a <£—Chain of length n"
can be expressed by an L-formula, and hence it is satisfied in every L-structure
N elementarily equivalent to M.

Finally, we say that a D-type p over M is finitely determined if for every
formula ¢ (Z,7), where the sort of T is consistent with D, ¢ > 0 and choice of

domains D' consistent with 7, there is 6 > 0 and a finite subset B of M (E)
such that, for every ¢;,¢; € M <ﬁl>,

sup |50 (5761) — ¢ (B)E2)| S 0
beB
implies
07 (T,21) — " (T,02) < e
or, equivalently, that the condition
|50 (Tv Cl) Z (T762)| <e
belongs to p.

Lemma 7.3.1 If M is a model of T which has a non-finitely determined type
over it, then M has the order property

Proof. By hypothesis, there is p € S, (ﬁ, M) and a formula 1 (Z,7), where

the sort of Z is compatible with D, a choice of domains D compatible with the

sort of y and € € (0, %) such that, for every § > 0 and every finite subset B of

M (D), there are b(6,B),¢(6,B) € M (5/) such that

acB

and
l¢? (7,b(6,B)) — " (,¢(0,B))| > ¢

Define now recursively sequences ()., in M (D), (B1)new » (Vn)new in M (ﬁl)

and (B,),c,, in [M (ﬁ)]<NO in this way: By = 9, 8; = B(%,Bj), v, =
c (%, Bj), o realizing the finite subset

{"le @, 8;) =@ ) =" i €{0,1,.... 5} }
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of pand Bj1 = BjU{aj, Bjs 'yj}. If f is a continuous function that is constantly

equal to 0 on (—oo, 5] and constantly equal to 1 on [g, 4+-00), then the formula

0 (1,91, 21, T2, Y2, 22) = [ (|0 (21,92) — o (21, 22)])

orders the sequence
((anv ﬁna 771,))7161\1

inM((E,E’,E’)). n

Proposizione 7.3.2 If L is a separable language and T is an L-theory, the
following statements are equivalent

~

. T is unstable

2. T is not c-stable

8. there is a model of T with the order property

4. there is a separable model of T with the order property
5

. for every linear order I there is a formula ¥ (Z,7), a choice of domains D

and a model M of T such that M (ﬁ) contains a <£—chain of order type
I

there is a model of T with the approzimate order property
every model of T of density character ¢ has the order property

some model of T has non-finitely defined types over it

L > =X S

every model of T of density character ¢ has not finitely defined types over
it

Proof.
1 = 2 Obvious

3 <4< 5 < 6 Bycompactness, Lowenheim-Skolem and the Fundamental The-
orem on Ultrafilters.

5= 1 Fix a cardinal A and suppose . is the least ordinal (or cardinal) such that
2 > X\. Suppose ¢ (Z,7) is a formula, D is a choice of domains witnessing

the order property, and M is a model of 7 with ~<E—Chain (@i);jeo<n Of
order type 2<¢, where 2<* has the lexicographic order. If

A={@},eper © M (D)

then A is closed and discrete of cardinality < A. By Lowenheim-Skolem,
one can assume M has character density < A. I now claim that the space
Se (D, M) has metric character density 2 > \. In fact, identify 2<# with
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the subset of eventually zero sequences in 2. For every o € 2/ consider a
Do €S5S¢ (D, M ) containing the consistent type

{90(5,67)20‘7>0,7'62<“}U{<p(f,67)=1|T<a,7'62<”}

I claim that E = {p, : o € 2"} is a closed and discrete subset of Sz (D, M)
in the metric d of cardinality 2* > X. Suppose € > 0 is such that, for every

N = M and b,d,5,d € N (D), max{d(5,),d(d,d)} < e implies
[ (0,d) —w (0.d)

Ola = Uia, o(a) =0 and ¢’ (o) = 1. Suppose N = M and ¢,¢ realize

< 1. Counsider ¢ # ¢’ € 2" and « € p such that

o,0’. Thus, 9 (E, ag‘aﬂ) =1 and ¥ (E’,ag‘aﬂ) = 0. As a consequence,
| (E’,ag‘aﬂ) — ¢ (C, ag‘aﬂ)’ > 1 and d(¢,¢) > e. This implies that
d (po,por) > €. This shows that the metric character density of S, (ﬁ, M )
is at least |E| = 2# > A. This shows that 7 is A-unstable.

2 =9 Suppose M is a model of 7 of character density c. If, by contradiction,
every type over M is finitely determined, then the character density of
Se (D,M) is at most ¢ = ¢

9= 8 A 7= 3 Obvious
9= 7A8= 3 It follows from the previous lemma

Corollario 7.3.3 If L is a separable language and A is an L-structure, then
the complete theory Th(A) of A is unstable iff A has the approximate order

property

Proof. Sufficiency is obvious. About necessity, assuming Th (A) unstable,
by 1 = 6 of the previous proposition there is a model M of Th (A) that has
the approximate order property. Thus, M is elementarily equivalent to A and,
since the approximate order property can be expressed by L-formulae, A has
the approximate order property as well. m

7.4 Gaps and the order property

If (P, <) is a poset and A, i1 two ordinals, a (A, u)-pregap in P is an increasing
sequence (a;);¢ indexed by X of elements of P and a decreasing sequence (bj)j cu
in P such that a; < b; for every i € A and j € u. An element = of P such that
a; <z < b; fills or separates the pregap. A (A, u)-gap is a (A, p)-pregap which
is not filled.

If L is a linear order, the coinitiality of L is the minimal cardinality of a
subset X of L such that, for every x € L there is y € X such that y < =z.
Denote by NN the set of nondecreasing functions f from N to N such that
lim,, o f (n) = +oo. IfU is a ultrafilter over N, the set NN /if of equivalence
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classes of elements of NN modulo / is linearly ordered by the relation | fly <
l9],, iff {neN|f(n)<g(n)} € U. The coinitiality of NN /if is denoted by
Kk (U).

Lemma 7.4.1 If (My), oy is a sequence of L-structures with the order property,
¥ (T,7) is a formula witnessing the order property of such sequence, where T and
7 are of sort S, D is a compatible choice of domains, and U is a ultrafilter on
N, then the least ordinal A such that HZ;L{ M, (D) contains an (w,\)-gap with

respect to <g is k (U).

Proof. Suppose {[f],,:i € k(U)} is a decreasing sequence in NN /i such
that, for every [g] € NN /U, there is i € x(U) such that [f;] < [g]. Define
recursively Ng = 1 and, for every m € N, N (m) > max {m, N,,,_1} such that,

for every i > N (m) thereis a ‘<§; chain (Ei’m, cny Ef;lm) of length m in M; (ﬁ)
For every i € I, define m (¢) € N such that ¢ € [N (m (7)), N (m (i +1))] and
—i,m( —q . . _ U

a, @) _ a; for every j € {1,2,.....,m(4)}. If h € NN, define &, € [], M, by
ay (i) = ay,(,;) if h (1) < m(i) and @, (i) = a,(, otherwise. For every m € N,
denote by h,, the function from N to N constantly equal to m. I claim that
(An,, )pen and Sﬁfi)ie@(u) form an (w, k)-gap iniW (D) with respect to <£. In
fact, suppose b € HZ;[ M, is such that a;, < b for every n € N. Define, for
every m € N,

X = {z > N (m) ‘Vk € {L,2,..om}, &, (i) <D . B(i)}
Thus, (X),,cy is a decreasing sequence of elements of I such that (1, X, = @.
For ¢ € Xy, define h (i) = m if i € X,,\X,;n+1. Consider an element X of U
such that, for every m € N, X\ X,, is finite. Define, recursively, Ky = 1 and,
vn € N, K,, > K,,_1 such that X N [K,,, +00) C X,,. Define, for every n € N
and z € [K,, Kpt1), h(z) = n. This defines U-almost everywhere an element

h of NN such that a, <5 b. If i € k(U) is such that [fi],, < [h]y, then
—<E ap, —<g b. This shows that HZ M,, (D) contain an (w, s (U))-pregap.
Suppose now that A is an ordinal such that HZ: M,, contains an (w, A)-gap and

ay,
suppose (a,),,cy and (E')K)\ give an (w, A)-gap on HZ M,,. Define, for every
n €N,

Y, = {z > n’ﬁl (1) ,...,a, (i) form a <Z —chain} cu

1
n

Define, for every m € N and i € Y,,,\Yy41, m (i) = m. If h € NV, define, as
above, a, € HZ M, by, for i € Y1,

ap (Z) = 5min{h(i),m(i)} (7’)

and observe that a, <g ay, for every n € N iff Y — lim,en b (n) = 400. Rea-
soning as above, for every i < A, it is possible to find f; € NN such that, for
every n € N, @, <£ ay, < b;. Now, I claim that the family {[filye};ey is such
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that, for every g € NN, there is i € A such that [fi],, < [g],,. In fact, suppose
g € NN, Thus, @, < a, for every n € N and, since a,; does not separate the
gap, there is ¢ € A such that a, 745 b;. It follows that a, 745 ay, and, hence,

9y £ [fily and [fl, < [gil,. =
In [D] it is proved that, for every regular cardinal p such that Rg < p < 2%0,

there is a ultrafilter & over N such that (/) = p. From this and the previous
lemma follows directly the following theorems.

Teorema 7.4.2 If L is a separable language, (My), oy 15 a sequence of L-
structures with the order property and ~CH holds, then there are nonprincipal
ultrafilters U,V over N such that

140, 2 [V M
n n

Proof. Pick ultrafilters ¢,V over N such that (U) = X; and & (V) = No.
By the previous lemma, if 1) and D are a formula and a choice of domains
witnessing the order property of the sequence (M), cy, then [], Y M,, contains
a (w,ws)-gap with respect to -<5, while [T, ¥ M,, does not. This implies that
[1,“M, and [], Y M, are not isomorphic. m

In [F'S] this theorem is refined, getting the following

Teorema 7.4.3 If L is a separable language, (M), y is a sequence of L-

structures with the order property and —CH holds, then there are 92" many
nonisomorphic ultraproduct of this sequence

Teorema 7.4.4 If L is a separable language and A is an L-structure of charac-
ter density < ¢ whose complete theory is unstable, then the following statements
are equivalent

1. for every nonprincipal ultrafilters U,V over N, A4 ~ AV

2. the Continuum Hypothesis holds

Moreover, if =C' H holds, then there are 2°-many nonisomorphic ultrapowers
of A
Proof.

2 = 1 If CH holds, then AY is saturated for every nonprincipal ultrafilter I
over N and the result follows from the fact that any two saturated

1= 2 Since Th(A) is unstable, A has the approximate order property and
the sequence constantly equal to A has the order property. The previous
theorem can be applied.
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7.5 Order property for C*-algebras

Lemma 7.5.1 If M is an infinite-dimensional C*-algebra, then M has the or-
der property

Proof. Since any infinite-dimensional C*-algebra M has infinite-dimensional
abelian *-subalgebras, we can assume M abelian. By the characterization the-
orem of abelian C*—algebras, there is a locally compact Hausdorff space X such
that M = Cy (X)), If X = X U{o0o} is the one point compactification of X, then

Co (X)

{f X —-C ‘ f is continuous and, Ve > 0, (|f] — €)+ is compactly supported}

{g|x‘960()?),9(00):0}~

Since M is infinite-dimensional, X is infinite. Consider an injective sequence
(an),ey of elements of X converging to oo. Define recursively compact neigh-
borhoods K, of {ay,...,a,} and functions f,, € Cy (X) such that f (X) C [0,1],
K, C Ky+1 and f, (K,) = 1 and f, (@) = 0 for m > n. Suppose n > 0
and fi,...., fn, and Ki,..., K, have been defined. Define now K, ;1 a compact
neighborhood of K, U{ay,1} missing {a;},., , and f,11 a continuous function
from X to [0,1] such that f,4+1 (K,+1) =1 and f,41 (@) =0 for m > n + 1.
Define now
gn = sup fr
1<k<n

and observe that {g,},cy is a sequence of distincts elements of M such that
gngm = gm if m < n and |lgn — gm|| =1 if n 7 m. Thus, if ¢ (z,y) = [|[zy — y||
then (gn),cy is a <£1-chain and M has the order property. m

Teorema 7.5.2 If ~CH holds and M is an infinite-dimensional C*-algebra,
then there are 2°-many nonisomorphic ultrapowers of M

Teorema 7.5.3 If M is a C*-algebra of character density < ¢ and CH holds,
the for any two nonprincipal ultrafilters U,V on N, MY ~ MY
7.6 Order property for /1, factors

Lemma 7.6.1 There is a formula v in the language of von Neumann algebras
such that, for every n € N, Man contains a <5—cham of length n — 1, where

D = (D1, Dy) and Dy is the unit ball

Proof. Identify My» with M$"™. Consider
(0 V2
= W)
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and observe that

= (5 5)

and [|z||, = 1, ||[z,2*]||, = 2. Define now, for 1 <i<n—1,

®x®®1

j=i+1
and
- i@1ose @ 1
J=i+2
Thus, |la?|l, = [|b7]l, = 3 and if ¢ < j then ||[a;, b;]||, = 0, while ||[a;, b;]||, = 1 if
j <. Thus, if ¢ (21,1, 72,52) = |21, 9a]lly, then ((af', b7, is & <D-chain.
[

Corollario 7.6.2 If M is a I1, factor, then M has the approzimate order prop-
erty

Proof. It follows from the fact that, for every n € N there is an injective
*_homomorphism ®,, : M, — M commuting with the trace. m

Lemma 7.6.3 The sequence (M,,) has the order property

neN
Proof. Suppose ¢ > 0 and n € N. If m > 2=L then m = k - r
for some r € {0,1,...,2”*1}. Thus, if p € M, is such that 7(p) = ==,

then pM,,p ~ Mg.on ~ My ® Man. Identify pM,,p with M ® Man. Suppose
((a?,b))i_ is as in the previous lemma. Define now of =1® a? € My ® Man
and 8 = 1® b € My ® My~ and observe that, if ¢ (xl,yl,xg,yg) = ||[z1, y2]ll5

as before, then ((af,8]"));_, is a <;D1’Dl)—chain in My ® Ma». Regard now o

and 87" as elements of M,,, and observe that, for every « € pM,,,p,

k2m
™, () = W%Mmp (z)
and hence ,
M., M M., My,
=I5 = llzlly™ = EH:L'HQ P<e|=y™m”

for every & € M, ® Mgn. Thus, ((a},3)) is a _<£sz1gD1)

0B -chain in M,,,. =

Teorema 7.6.4 If ~CH holds, then there are 2°-many nonisomorphic ultra-

products of the sequence (M), cy

Teorema 7.6.5 If -CH holds and M is a 11 factor, then there are 2°-many
nonisomorphic ultrapowers of M

Teorema 7.6.6 If M is a von Neumann algebra of character density < ¢ and
CH holds, then for any two nonprincipal ultrafilters U,V on N, MY ~ MY
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7.7 Order property for symmetric and unitary
groups

Lemma 7.7.1 There is a formula ¢ (x1, z2,y1,y2) in the language of bounded
bi-invariant metric groups such that, for every n € N, S3» has a <y-chain of
length n.

Proof. Identify S3» with the set of permutations of {0,1,2}". Consider the

inclusion
n times

——
Sg X ... X S3 — S{O,172}"

defined by
(0-07---70-1'7,—1) — 009 X ... X Op—1

and
(O’O X ... X Un—l) (io, ...,in_l) = (0'1 (7,1) sy Oy (’Ln))

Define also, for ¢ =1, ..., n,

© times n—i times

—_—t— ——
of =(12) x ... x (12) x e X ... X €

and
j—1 times n—j times
—— ——
Ti=exX..xex(23) xex..xe

Observe that, for ¢ < j, [0;,7;] = 1, and for ¢ > j,

7—1 times i—j times n—j times
—_——— —N— ——
o7, 77 =ex .. xex (123) xex..Xexex..xe

Thus, if 4 < j, then
d([a” T;L] 7e) =0
while, if ¢ > j, then

d([on TT}] 76) =1

i

Thus, if ¢ (z1,22,91,92) = d([z1,92],¢), then the sequence ((0i,7:));; is a
<y-chain in Szn. =

Lemma 7.7.2 The sequence (Sy),,cy has the order property

Proof. Suppose € > 0 and n € N. Consider m € N is such that m > 3? then
m = k3" +r for some k,7 € Nand 0 < r < 3". Suppose that ¢ and ((o;,7;))i,
k times
—~
are as in the previous lemma. As before, embed S3n» X ... X S3n in Sgz» and
consider the elements

k times

#ﬁ
n n n
X =0 X..x0] € Span

%
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and
k times

,_/\ﬁ
n n n
,‘Tj = Tj X oo X Tj S Skgn.

Observe that [E?,Tj"] =eif i < j and d([E?,TJn] ,e) =1if i > j. Let Skan

act on the first k3" elements of m. This defines an inclusion of Si3» of S, that
sends X and T}" to elements X2}""™ and T;""™ of S,,. These satisfy the following:

[i?’m,f’f’m] =eifi < j and
d([i?,iﬂ},e) ST (A
m m

if « > j. This shows that Since this true for every ¢ > 0, n € N and m > 3?,
(Sn)pen has the order property. m

Corollario 7.7.3 The sequence (Uy,) has the order property

neN

Proof. Fix ¢ > 0 and n € N. Suppose n > 0 is such that /1 —n >1—¢. If

m > 3’77:, consider ((f}?””,i"’m ) as in the proof of the previous lemma.

=1
Remind that, if 0 € S,,, and A, € Uzm is defined by
AO‘ (ei) = ea(i)
then the function 0 — A, is a homomorphism such that, for every o, 7 € S,,,
1 2
d(o,7)= id(AU,AT)

Thus, if ¢ is the formula as in the previous lemma, one has

1
V2

¥ (Agyom, A, Agpm, A ) = \%d([Aiy,m,A@n,m} e)

Thus, 6 (Agym, Agen ) = 0§ < j and ¥ (A, Agen ) 2 VT=1 > 1 ¢
i J K J
if 4 > j. This shows that the sequence ((Ain,nz,A,j—?n,nr))
i i=1

in U,,. Since this is true for every € > 0, n € N and m > 3?", (Un) ey has the
order property.

is a —<;w—chain
72

Teorema 7.7.4 If-CH holds, then there are 2°-many nonisomorphic universal
sofic groups and universal hyperlinear groups.
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