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The purpose of my visit was better understanding the relationships between
logic, Ramsey theory, so�c groups and operator algebras. During my stay, I
found that methods from logic can be succesfully applied in the study of so�c
and hyperlinear groups. For instance, I observed that so�c groups can be char-
acterized as those (countable discrete) groups that can be embedded in the
permutation group of some (or, equivalently, any) in�nite hyper-natural num-
ber. Analogously, hyperlinear groups can be characterized as those groups that
can be embedded in the groups of unitary � � � matrices, where � is some (or,
equivalently, any) in�nite hyper-natural number. A similar characterization is
given by Vladimir Pestov in [P], where it is proved that a (countable discrete)
group is so�c (resp. hyperlinear) if and only if it can be embedded in some (or,
equivalently, any) ultraproduct of the sequence of �nite symmetric groups (resp.
�nite rank unitary groups). This result motivates the name of universal so�c
(resp. hyperlinear) groups for the ultraproducts of the �nite symmetric groups
(resp �nite rank unitary groups). Universal so�c groups have been studied by
Simon Thomas in [T], where it is proved that the failure of CH implies that
there are 22

@0 -many non-isomorphic so�c groups. His proof uses some algebraic
properties of the �nite symmetric groups, and it is not clear if and how it can
be modi�ed to get a proof of the analogous statement for hyperlinear groups,
namely that the failure of CH implies the existence of 22

@0 -many nonisomorphic
universal hyperlinear groups. I noticed that model theory for metric structures,
introduced by Ben Yacoov, Berenstein, Hensov and Usvyatsov in [BYBHU],
can be used to get an alternative proof of Thomas�theorem on universal so�c
groups, and to get a proof of the analogous statement for hyperlinear groups as
well. More precisely, one has to refer to stability theory for metric structures,
developed by Farah, Hart, Sherman and Shelah in [FHS2] and [FS] in order
to study the number of ultrapowers of C�-algebras and von Neumann algebras
(see [FHS1]). In particular, in those papers it is introduced the so called order
property for sequences of metric structures, and it is proved that the failure of
CH implies that any sequence with the order property has 22

@0 -many noniso-
morphic metric ultraproducts. The result about universal so�c and hyperlinear
groups is deduced from this one showing that the sequences of �nite symmetric
and unitary groups have the order property.
During my visit, I also gave a talk about these topics at the University

of Pisa entitled "L�ipotesi del continuo ed ultrapotenze di C�-algebre e algebre
di von Neumann" ("The continuum hypothesis and ultrapowers of C�-algebras
and von Neumann algebras"), invited by prof. Mauro di Nasso. An abstract (in
Italian) of the talk can be found on the website

http://poisson.phc.unipi.it/~mantova/slap/it/node/29.
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The slides (in Italian) from the talk will be soon available on the same
website.
Finally, in this period I wrote a survey paper about these topics, that you

can �nd attached in the rest of this document. The paper, entitled "Continuum
Logic, Operator Algebras and So�c and Hyperlinear Groups: A Survey", is
aimed to present the results that I summarized in this Scienti�c Report to a
broad public, that does not have necessarily any speci�c previous knowledge
about so�c groups, model theory and operator algebras.
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Chapter 1

C*-algebras

An (abstract) C*-algebra A is a Banach algebra endowed with an antilinear
involution � such that kx�xk = kxk2 for every x 2 A.
A norm-closed subspace of B (H), where H is a Hilbert space, is a (concrete)

C*-algebra. Any abstract C*-algebra is isomorphic to a concrete C*-algebra. A
*-homomorphism � from a C*-algebra A to a C*-algebra A0 is an algebraic ho-
momorphism such that � (x�) = � (x)� for every x 2M . It can be proved that
any *-homomorphism is contractive, and hence an injective *-homomorphism is
isometric.
An element x of a C*-algebra A is called

� normal if xx� = x�x

� self-adjoint if x = x�

� positive if x = y2 for some self-adjoint

� unitary if xx� = x�x = 1 (when A has a unit)

� projection if x� = x = x2

� partial isometry i¤ x�x and xx� are isometries

If H a Hilbert space, examples of C*-algebras are B (H), the set K (H) of
compact bounded linear operators on H and the quotient B (H) /K (H) , called
Calkin algebra. If X is a locally compact Hausdor¤ space, then the set C0 (X)
of continuous complex-valued continuous functions on X vanishing at in�nity
(namely, functions f such that, 8" > 0, (jf j � ") _ 0 is compactly supported)
with the sup norm and adjunction f� = f is a commutative C*-algebra. Every
commutative C*-algebra is isomorphic to a C*-algebra of this kind. An element
f of C0 (X) is

� self-adjoint i¤ f [X] � R

� positive i¤ f [X] � R+
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� unitary i¤ f [X] � S1

� invertible i¤ 0 =2 f [X]

� projection i¤ f is the characteristic function of a connected component of
X

A linear functional � on a C*-algebra is called

� positive if sends positive elements to positive real numbers

� state if it is positive and has norm 1

� tracial if � (xy) = � (yx) for every x; y 2 A

A positive functional � is automatically bounded, and it is called faithful
if, for a positive, � (a) = 0 i¤ a = 0.
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Chapter 2

Von Neumann algebras

2.1 De�nition and examples of von Neumann al-
gebras

The strong (resp. weak) operator topology on B (H) is de�ned by the following
rule: a net (Ti)i2I converges to T in the strong (resp. weak) operator topology
if and only if for every x 2 H, the net (Tix)i2I converges to Tx in the norm
(resp. weak) topology of B (H). The �-strong (resp. �-weak) topology on
B (H) is de�ned by the following rule: a net (Ti)i2I converges to T in the �-
strong or ultrastrong (resp. �-weak or ultraweak) topology if and only if for
every (xn)n2N 2 l2 (H), the net

�
T ixn

�
n2N converges to (Txn)n2N in the strong

(resp. weak) topology of l2 (H).
It is easily seen that the strong topology is stronger than the weak topology,

the �-strong topology is stronger than the strong topology and the �-weak
topology is stronger than the weak topology. In general �-weak and strong
topology are not comparable. Moreover, �-strong and strong (resp. �-weak and
weak) operator topologies agree on bounded sets.
It can be proved that, ifM is a von Neumann algebra, then there is a unique

Banach space X such that M is the dual of X, and the �-weak topology on M
is the weak� topology on M as the dual of X.

De�nizione 2.1.1 A von Neumann algebra M acting on the Hilbert space H
is a weak operator closed self-adjoint subalgebra of B (H)

Since the norm topology is stronger than the weak operator topology, a von
Neumann algebra is in particular a C*-algebra. It can be shown that a von
Neumann algebra always contains a multiplicative identity.
The strong (resp. �-strong, weak, �-weak) topology on a von Neumann

algebra M � B (H) is the subspace topology on M induced by the strong
(resp. �-strong, weak, �-weak) topology on B (H). We tend to identify two
von Neumann algebras when they are *-isomorphic, even though they act on
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di¤erent Hilbert spaces. It has to be noted though that the weak and strong
operator topologies induced on M by these two actions are in general di¤erent.
It can be proved that, instead, �-strong and �-weak topology do not depend on
the concrete representation of the von Neumann algebra, i.e. they are intrinsic.
Moreover, any *-isomorphism of von Neumann algebras is a homeomorphism
with respect to the �-weak and �-strong topologies.
The foundation of the theory of von Neumann algebras is the Bicommutant

Theorem, proved by von Neumann in the �30s. If S is a subset of B (H), its
commutant is

S0 = fx 2 B (H) j 8y 2 S, xy = yxg .

The double commutant S00 of S is the commutant of the commutant of S.

Teorema 2.1.2 If S is a self-adjoint subalgebra of B (H), then S is weakly
closed (i.e., it is a von Neumann algebra) i¤ S00 = S

It follows that, if S is a self-adjoint subset of B (H), then S00 is the smallest
von Neumann algebra containing S.
The von Neumann Bicommutant theorem gives an easy way to de�ne von

Neumann algebras. For example, consider a countable discrete group � and the
left regular representation � : �! U

�
`2 (�)

�
, de�ned by

�� (�
) = ��
 .

Then, the double commutant of � [�] is a von Neumann algebra L�, called
the group von Neumann algebra of �. If � acts on a probability space with
measure preserving transformations, one can de�ne a unitary representation
� : �! L2 (X) by

(�
f) (x) = f
�

�1x

�
and also the unitary representation � 
 � : � ! L2 (X) 
 `2 (�), where � is
again the left regular representation. Since L1 (X) acts naturally on L2 (X),
and hence on L2 (X)
 `2 (�), setting

t (f 
 �
) = (tf)
 �


for every 
 2 �, t 2 L1 (X) and f 2 L2 (X), one regard L1 (X) as a subset of
B
�
L2 (X)
 `2 (�)

�
and hence consider the double commutant L1 (X) o � of

the set
L1 (X) [ (� 
 �) [�] ,

which is called cross product von Neumann algebra.
Another classic result is the Kaplanski density theorem

Teorema 2.1.3 If A is a self-adjoint subalgebra of B (H), then the unit ball
of A00 is the strong closure of the unit ball of A, and the unit ball of (A00)sa =
fx 2 A00 jx is self-adjointg is the strong closure of the unit ball of

Asa = fx 2 A jx is self-adjointg :
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The fact that the unit ball of B (H) is compact in the weak operator topology
is proved in a way similar to the fact that the unit ball of H is weakly compact,
applying the Tychono¤ theorem on products of compact spaces.
As a direct consequence of the fact that a von Neumann algebra is strongly

close, one can deduce that any upper bounded increasing net of self-adjoint
elements in a von Neumann algebra M converges strongly to its.sup, which
belongs to M . Moreover, every element x can be written uniquely in the form
u jxj, where jxj = (x�x)

1
2 2 M is the absolute value of x, i.e. the only positive

element of B (H) such that kjxj �k = kx�k for every � 2 H, and u 2 M is the
partial isometry such that u�u is the projection onto ran (jxj) = ran (x�) =

ker (x)
? and uu� is the projection onto ran (x).

2.2 Linear functionals on von Neumann alge-
bras

The strongly and weakly continuous linear functionals on a von Neumann alge-
bra admit a precise characterization.

Proposizione 2.2.1 If M � B (H) is a von Neumann algebra and � a linear
functional on M , TFAE

1. � is weakly continuous

2. � is strongly continuous

3. there are �1; :::; �n; �1; :::; �n 2 H such that, 8x 2M ,

� (x) =
nX
k=1

hx�k; �ki

Proof.

2) 3 By strong continuity, there are " > 0 and �1; :::; �n 2 H such that,
8� 2M , if kx�ik � " for all i 2 f1; 2; :::; ng, then j� (x)j � 1. De�ne H the
norm closure the subspace

f(x�1; :::; x�n) jx 2M g

in Hn. De�ne the bounded linear functional  on H by

 (x�1; :::; x�n) = � (x)

Observe that  is well de�ned since, if x�i = 0 for every i 2 f1; 2; :::; ng,
then � (x) = 0. By the Riesz-Fischer theorem, there are �1; :::; �n 2 H
such that, for every x 2M ,

� (x) =  (x�1; :::; x�n) =
nX
i=1

hx�i; �ii .
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3) 1) 2 Obvious.

If, for i 2 f1; 2g, Mi � B (Hi) is a von Neumann algebra, then the algebraic
tensor product M1 �M2 acts on the Hilbertian tensor product H1 
H2, by

(x
 y) (� 
 �) = (x�)
 (y�) .

This gives an inclusion of M1 � M2 in B (H1 
H2). The strong closure of
M1�M2 in B (H1 
H2) is a von Neumann algebra, called the tensor product
M1 
M2 of M1 and M2.
For example, if Mn = B (Cn) is the von Neumann algebra of n� n matrices

with scalar coe¢ cients and M � B (H) is any von Neumann algebra, then
Cn 
H ' Hn and Mn 
M ' Mn (M) � B (Hn) is the von Neumann algebra
of n� n matrices with coe¢ cients in M .
The �-strong and �-weak topology on a von Neumann algebra M � B (H)

can be characterized in terms of tensor products. In fact, if 1 is the trivial von
Neumann algebra in B

�
l2 (N;C)

�
, then

M 
 1 � B
�
H 
 l2 (N;C)

�
= B

�
l2 (N;H)

�
where, 8T 2M , 8 (�n)n2N 2 l2 (N;H),

(T 
 1) (�n)n2N = (T�n)n2N ,

is a von Neumann algebra isomorphic to M . The strong (resp. weak) weak
operator topology onM
1 � B

�
l2 (N;H)

�
is exactly (modulo the isomorphism

T ! T 
 1) the �-strong (res. �-weak) operator topology on M .
The �-weak and �-strong functionals admit themselves a characterization.

Proposizione 2.2.2 If � is a linear functional on a von Neumann algebra M ,
TFAE

1. 9 (�n)n2N ; (�n)n2N 2 l2 (H) such that, 8x 2M ,

� (x) =
X
n2N
hx�n; �ni

2. � is �-weakly continuous

3. � is �-strongly continuous

4. � is weakly continuous on the unit ball M1 of M

5. � is strongly continuous on the unit ball M1 of M

Proof.

1) 2 Suppose (xi)i2I converges �-weakly to 0. Thus
�
(xi�n)n2N

�
i2I converges

weakly to 0 in `2 (N;H), and hence (� (xi))i2I =
�P

n2N hxi�n; �ni
�
i2I

converges to 0.
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2) 3 It follows from the fact that the �-strong topology is stronger than the
�-weak topology.

2) 4 It follows from the fact that �-weak and weak operator topologies agree
on bounded sets

3) 5 It follows from the fact that �-strong and strong operator topologies
agree on bounded sets

4) 5 It follows that the strong operator topology is stronger than the weak
operator topology

5) 2 The �-weak topology is a weak� topology on M . Moreover, �-weak and
weak topology agree on bounded sets. The conclusion follows from the
Krein-Smulian theorem.

3) 1 By �-weak continuity, there are �i =
�
�in
�
n2N for i 2 f1; 2; :::; Ng and

" > 0 such that
P
n



x�in

2 < " for every i 2 f1; 2; :::; Ng implies j� (x)j �
1. De�ne H the norm closure ofn�

x�1; :::; x�N
�
jx 2M

o
in `2 (H;N� f1; 2; :::; Ng) and let  be the bounded linear functional on
H de�ned by

 
�
x�1; :::; x�N

�
= � (x) :

By the Riesz-Fisher theorem, there is
�
�1; :::; �n

�
2 `2 (H;N� f1; 2; :::; Ng)

such that

� (x) =  
�
x�1; :::; x�N

�
=

D�
x�1; :::; x�N

�
;
�
�1; :::; �N

�E
=

NX
k=1

X
j2N

D
x�kj ; �

k
j

E
:

The result follows observing that `2 (H;N� f1; 2; :::; Ng) ' `2 (H;N).

Corollario 2.2.3 If � is a *-representation of M on H, TFAE

1. � is normal, i.e. ultraweak-ultraweak continuous

2. the restriction of � to the unit ball is weak-weak continuous

3. the restriction of � to the unit ball is strong-weak continuous

4. � is ultrastrong-ultraweak continuous
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Proof.

1) 2 Obvious

2) 3 Obvious

3) 4 Since � is a contraction and weak and ultraweak topologies coincide on
bounded sets, �jM1

is weak-weak continuous.

4) 1 Consider the representation � of M on `2 (H) de�ned by

�(x) (�n)n2N = (� (x) �n)n2N .

Since � is a contraction and �-strong and strong topology coincide on
bounded sets, �jM1

is strong-ultraweak continuous. This implies that �jM1

is strong-weak continuous. If �; � 2 `2 (H) and  �;� (T ) = hT�; �i for
T 2 B

�
`2 (H)

�
, then  �;� ��jM1

is strongly continuous. Since  �;� �� is a
linear functional onM , this implies that  �;��� is ultraweakly continuous.
Since this is true for every �; � 2 `2 (H), � is ultraweak-weak continuous
and hence � is ultraweak-ultraweak continuous.

From the fact that (�-)strong and (�-)weak operator topologies have the
same continuous functionals, it follows that a convex subset of B (H) is (�-
)strongly closed i¤ it is (�-)weakly closed.
The follow characterization of von Neumann algebras follows directly from

this fact, the von Neumann bicommutant theorem and the Kaplanski density
theorem.

Proposizione 2.2.4 If A is a self-adjoint subalgebra of B (H), TFAE

1. A00 = A

2. A is a weakly closed, i.e. it is a von Neumann algebra

3. A is strongly closed

4. A is �-strongly closed

5. A is �-weakly closed

6. the unit ball of A is weakly closed

7. the unit ball of A is strongly closed

Proof.

1, 2 It is the Bicommutant Theorem

2, 3 It follows from the fact that a convex set is (�-)strongly closed i¤ it is
(�-)weakly closed
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4, 5 Idem

6, 7 Idem

2, 6 It follows from the Krein-Smulian theorem and the fact that �-weak and
weak topology coincide on bounded sets

3) 4 It follows from the fact that the �-strong topology is stronger than the
strong topology

5) 6 It follows from the fact that the unit ball of B (H) is strongly closed and
�-strong and strong topology coincide on bounded sets

Proposizione 2.2.5 If � is a state on a von Neumann algebra M , TFAE

1. � is �-weakly continuous

2. for every bounded decreasing net (yi)i2I in M+ such that infi2I yi = 0,
limi2I � (yi) = infi2I � (yi) = 0

3. � is normal, i.e. for every bounded increasing net (xi)i2I of self-adjoint
elements of M , limi2I � (xi) exists and it is equal to � (supi xi)

Proof.

1) 2 The net (yi)i2I converges strongly to 0, and � is strongly continuous on
bounded sets.

2) 3 Consider x = supi xi and yi = x� xi for every i 2 I.

3) 2 Consider xi = �yi and observe that supi xi = � infi yi = 0

2) 1 It is enough to prove that, if (xi)i2I is a net in M1 strongly converging

to 0, then limi2I � (xi) = 0. If (xi)i2I is such a net,
�
(xi+x

�
i )

2

�
i2I

and�
i
xi�x�i
2

�
i2I

are nets of self-adjoint elements inM1 strongly converging to

0. Therefore, without loss of generality, I can assume xi = x�i for every

i 2 I. In this case,
�
xi+jxij

2

�
i2I

and
�
jxij�xi

2

�
i2I

are nets of positive

elements inM1 strongly converging to 0. It is therefore enough considering
the case xi 2 M+ for every i 2 I. In this case, suppose yi = supj�i xj
and observe that (yi)i2I is a bounded decreasing net in M+ such that
infi2I yi = 0. Thus, limi � (yi) = 0. Since � (yi) � � (xi) � 0, it follows
that limi2I � (xi) = 0.
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2.3 Projections and classi�cation

A projection p of a von Neumann algebraM is a self-adjoint idempotent element
of M . Projections have a central role in the study of von Neumann algebra.

Proposizione 2.3.1 If M is a von Neumann algebra, then M is the norm
closure of the set of its projections.

If M is a von Neumann algebra and p; q 2M are projections, we write

� p � q if pq = qp = p

� p � q if there is u 2M such that u�u = p and uu� = q

� p - q if p � p0 � q.

It can be proved that - is a preorder whose induced equivalence relation is
�.
A projection p 2M is called

� �nite if p � q � p implies q = p

� in�nite if it is not �nite or, equivalently, there is a countably in�nite
orthogonal family of pairwise equivalent nonzero subprojections of p

� properly in�nite if p � p1+ p2, p1 � p � p2 and p1?p2 or, equivalently,
p is the sum of a countably in�nite orthogonal family of subprojections of
p isomorphic to p

� purely in�nite if it does not contain any nonzero �nite projection

� semi�nite if does not contain any purely in�nite projection or, equiva-
lently, every nonzero subprojection of p contains a nonzero �nite projection

� abelian if pMp is abelian

� minimal if it is minimal with respect to the - preorder

� continuous if it does not contain any nonzero abelian projection

� discrete if does not contain any nonzero continuous subprojection or,
equivalently, every nonzero subprojection of p contains a nonzero abelian
projection

It is easily seen that these properties are preserved under equivalence. More-
over, any abelian projection and any subprojection of a �nite projection is �nite.
A von Neumann algebra M is called �nite (in�nite, purely in�nite, etc...) if

the identity 1M of M is �nite (in�nite, purely in�nite, etc...).
A von Neumann algebra is called of

� type I if it is discrete
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� type II1 if is continuous and �nite

� type II1 if it is semi�nite, continuous and in�nite

� type III if it is purely in�nite

Maximality arguments show that, if M is a von Neumann algebra, then M
can be written as a direct sum of

� a �nite and a properly in�nite von Neumann algebra

� a semi�nite and a purely in�nite von Neumann algebra

� a discrete and a continuous von Neumann algebra

From this result , it is not di¢ cult to deduce the classi�cation theorem for
von Neumann algebras: any von Neumann algebra can be written as a direct
sum

M =MI �MII1 �MII1 �MIII

where MI ;MII1 ;MII1 ;MIII are von Neumann algebras of type I,II1,II1 and
III respectively. Moreover, MI can be written as a �nite direct sum of an
in�nite discrete (i.e. of type I1) von Neumann algebra MI1 isomorphic to
B (H)
Z and von Neumann algebras MIn isomorphic to Mn
Zn (i.e. of type
In) for n 2 N, where H is a Hilbert space, Mn is the algebra of n� n matrixes
over C and Z;Zn are commutative von Neumann algebras.
It can be proved that a von Neumann algebra M is �nite if and only if it

has a tracial state � . Moreover, if M is a �nite factor, such a tracial state is
unique and it turns out to be normal, faithful and such that, for every x 2 M ,
� (x) 1 is the only element of C1 �M which belongs to the norm closed convex
hull of fuxu� ju 2M unitaryg (Diximier property).
For a projection p is equivalent being �nite and the fact that, whenever q; r

are equivalent subprojections of p, also p� q and p� r are equivalent subprojec-
tions of p. This implies that, in a �nite von Neumann algebra, a parial isometry
u in M such that u�u = 1 is a unitary. Moreover, any two equivalent projec-
tions are conjugate by a unitary and, as a consequence, every x 2M has a polar
decomposition of the form u jxj where u is a unitary.

2.4 Factors and dimension function

De�nizione 2.4.1 The center Z (M) of a von Neumann algebra M is M \M 0.
A von Neumann algebra with trivial center is called a factor.

Every von Neumann algebra can be decomposed into an integral of factors.
Therefore, in order to study von Neumann algebras, it is no loss of generality
restricting to factors. By the classi�cation theorem, a �nite factor is either of
type II1 or of type In for some n 2 N.
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If M is a factor, the pre-order - is total, and a projection is abelian if and
only if it is �nite. It follows that, in a factor, any two minimal projections
are equivalent. Moreover, a type II1 factor is a �nite factor that does not
contain any minimal projection. Instead, a �nite type I factor M is a factor
such that any projection contains a minimal projection. Since any two minimal
projections are conjugate and orthogonal, M has only �nitely many minimal
projections. If n is the number of minimal projections of M , then M is of type
In, i.e. isomorphic to the algebra Mn of n� n matrices over C.
If M is a �nite factor, there is a unique function d, called dimension

function, from the set of projections of M to [0; 1] such that d (1) = 1,
d (p+ q) = d (p) + d (q) if p?q and d (p) � d (q) i¤ p - q. Moreover, if � is
the trace of M , then � (p) = d (p) for every projection p. In fact, if M =Mn is
of type In, then it is clear that

d (p) = dim rank (p)

is the unique function having those properties. Moreover, the trace � of Mn is
the usual matrix trace, and it is cleat that in this case d (p) = � (p) for every
projection p. Suppose now that M is a II1 factor. Since - is total in M and
M has no minimal projections, it follows that any nonzero projection of M
has nonzero equivalent orthogonal subprojections. De�ne p1 = 1 and p0 = 0.
Suppose fpi; qigi2I is a maximal orthogonal family of projections of M such
that pi � qi for every i 2 I. De�ne

p 1
2
=
X
i2I

pi

and
q 1
2
=
X
i2I

qi:

Then, p 1
2
� q 1

2
, p 1

2
; q 1

2
are orthogonal and p 1

2
+ q 1

2
= 1. Analogously, �nd

p 1
4
� p 1

2
such that p 1

4
�
�
p 1
2
� p 1

4

�
and de�ne, if u is a partial isometry such

that u�u = p 1
2
and uu� = p� p 1

2
,

p 3
4
= p 1

2
+ up 1

4
u�:

Proceeding inductively, it is possible to de�ne, for every diadic rational �, a
projection p� in M such that the function � ! p� is monotone and, if � � �,
then p� � p� � p���. De�ne now, for � 2 [0; 1],

p� = sup fp� j� diadic rational � �g .

It is clear that, if � < �, then p� < p� . Observe that, if p is a nonzero projection,
then p� - p for su¢ ciently small �. If not, then p - p� for every � and hence,
p� - p2�n+1�2n = p2�n+1 � p2n for every n 2 N. This implies that there is an
in�nite orthogonal family of nonzero equivalent projections of M , contradicting
�niteness of M . It follows that

inf fp� j� 2 [0; 1]g = 0.
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If � 2 (0; 1) and
p0� = inf fp� j� 2 (�; 1]g

then
p0� � p� � p� � p� � p���

for every � 2 (�; 1], and hence p0� = p�. Now, if p is a projection in M and

� = inf f� 2 [0; 1] j p - p� g = sup f
 2 [0; 1] j p
 - pg

then p � p�. In fact, by comparability, p - p� or p� - p. Suppose p - p�.
Thus, there is q � p� such that q � p. Now, if � < � then p� � p � q implies

p� � q - p� � p� � p���

and, since this is true for every � < �, p� = q � p. If p� - p then 1 � p -
1� p� � p1��, where

1� � = inf f� 2 [0; 1] j 1� p - p� g = sup f
 2 [0; 1] j p
 - 1� pg

and hence, by the previous case, 1� p � p1�� � 1� p� and p � p�. It is clear
that a dimension d has to be such that d (p�) = � for every � 2 [0; 1] and such a
function is in fact a dimension function. If now � is the unique (faithful normal)
tracial state on M , it is easily proved by induction that � (d�) = � for every
diadic rational � and hence, by normality, � (d�) = � for every � 2 [0; 1].

Lemma 2.4.2 If M is a II1 factor and n 2 !, then there is an injective *-
homomorphism � :M2n !M such that �M � � = �M2n

Proof. By induction on n 2 !. If n = 0 thenM2n is the trivial algebra. Suppose
the thesis is true for n and identify M2n+1 with M2 
M2n . Suppose p 2 M is
a projection such that � (p) = 1

2 . By inductive hypothesis, there is an injective

*-homomorphism � : M2n ! pMp such that � (� (x)) =
�M2n (x)

2 for every
x 2M2n . Suppose u 2M is a partial isometry whose range projection is p and
source projection in 1�p. Thus, u�u = u� (1� p)u = p and uu� = upu� = 1�p,

u (pMp)u� = (1� p)M (1� p)

u (pMp)u = (1� p)Mp

and
u� (pMp)u� = pM (1� p) .

De�ne now the function 	 :M2 
M2n by

	

��
a b
c d

�

 x
�
= a	(x) + bu	(x)u+ cu�	(x)u� + du	(x)u�
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It is easily seen that 	 is a *-homomorphism. Moreover,

�M

�
	

��
a b
c d

�

 x
��

= �M (a	(x) + bu	(x)u+ cu
�	(x)u� + du	(x)u�)

= a�M (	 (x)) + d�M (u	(x)u
�)

=
1

2
(a+ d) �M2n

(x) =

= �M2

��
a b
c d

��
�M2n

(x)

= �M2n+1
(x)

2.5 Tracial states

A tracial von Neumann algebra is a (�nite) von Neumann algebra M endowed
with a faithful normal tracial state � . A tracial von Neumann algebra can be
endowed with a scalar product hx; yi� = � (y�x). The completion of M with
respect to this scalar product is denoted by L2 (M; �). De�ne x! bx the natural
embedding of M into L2 (M; �). De�ne, for x 2M , � (x) 2 B

�
L2 (M; �)

�
such

that
� (x) by = cxy

for every y 2M . Observe that, 8x; y; z 2M ,

kcxyk22 = � (y�x�xy)

� � (y� kx�xk1 y)

= kx�xk1 kyk
2
2

= kxk21 kyk
2
2

and hence � (x) 2 B
�
L2 (M; �)

�
is well de�ned. Observe that b1 is a separating

vector, i.e. � (x)b1 = 0 implies x = 0. In particular, � is injective. Moreover,
h� (x�) by; bzi =

Ddx�y; bzE
= � (z�x�y)

= �
�
(xz)

�
y
�

= hby;cxzi
= hby; � (x) bzi
=



� (x)

� by; bz�
and hence � is a �-homomorphism. Being injective, its image is a C*-algebra
and � is an isometry with respect to k�k1. I now claim that � is normal. By
a previous corollary, it is enough to prove that �jM1

is weak-weak continuous.
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Suppose thus that (zi)i2I is a net inM1 weakly converging to 0. I have to prove
that (� (zi))i2I converges weakly to 0. Since (� (zi))i2I is bounded, it is enough
to prove that (h� (zi) bx; byi)i2I converges to 0 for all x; y 2M . We have

h� (zi) bx; byi = � (y�zix)

where (y�zix)i2I converges weakly to 0, and hence by normality of � ,

0 = lim
i
� (y�zix) = lim

i
h� (zi) bx; byi

This implies that � (M) is itself a von Neumann algebra. In fact, by (�-)weak
compactness of M1 and �-weak continuity of �, � (M1) = (� (M))1 is (�-)weak
compact and hence � (M) is a von Neumann algebra. This shows that M can
be regarded as a von Neumann algebra acting on L2 (M; �).
From this fact, it can deduced, for example, that the topology induced by

the k�k2 on M1 coincides with the (�-)strong topology. In fact, regard M as a
subset of B

�
L2 (M; �)

�
. If (zi)i2I is a net in M1 converging to 0 in k�k2, I claim

that (zi)i2I converges strongly to 0 (wrt the action of M on L2 (M; �)). Since
(zi)i2i is a bounded net and fby j y 2M g is a dense subspace of L2 (M; �), it is
enough to prove that limi2I kzibyk2 = 0 for every y 2M . We have

lim
i
kzibyk2 = lim

i
kziyk2

� kyk1 limi kzik2 = 0

Conversely, if (zi)i2I converges to 0 strongly (wrt L
2 (M; �)), then

0 = lim
i2I




zib1



2
= lim

i2I
kzik2 = 0.

It follows that the unit ball M1 of M with the metric induced by the k�k2 is a
complete metric space. In fact, suppose (zn)n2N is a k�k2-Cauchy sequence in
M1. If x 2M , then

(� (zn) bx)n2N = (dznx)n2N
is a Cauchy sequence in L2 (M; �), and hence it converges to T bx 2 L2 (M; �)
such that kT bxk2 � kbxk2. This de�nes a bounded linear operator T on L2 (M; �)
of norm � 1, such that (� (zn))n2N converges strongly to it. Since � (M) is a
von Neumann algebra, it is strongly closed and hence T 2 � (M) and T = � (z)
for some z 2M1. We have

0 = lim
n




� (zn)b1� � (z)b1


 = lim
n
kzn � zk2

and hence (zn)n2N converges to z in k�k2. Since this is true for every Cauchy
sequence in k�k2, it follows that M1 is complete wrt to the distance induced by
k�k2.
Reasoning as above, it can be prove that, ifM is a C*-algebra endowed with

a faithful trace � such that the norm unit ball of M is k�k2-complete, then M is
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a von Neumann algebra and � is normal. In fact, if � : M ! B
�
L2 (M; �)

�
is

the GNS representation, as before the 2-topology on � (M)1 = � (M1) coincide
with the strong topology. Since � (M)1 is a complete metric space wrt to the
2-norm, it has to be strongly closed. Moreover, if (zi)i2I is a net in M1 strongly

converging to 0 then
�
z
1
2
i

�
i2I

is a net in M1 strongly converging to 0. Thus,

0 = lim
i2I




z 12i 


2
2
= lim

i2I
� (zi)

and � is normal. As a consequence, the GNS representation � is normal too.
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Chapter 3

Ultraproducts

If I is a set, (Xn; dn)n2I is an I-sequence of uniformly bounded metric spaces
and U an ultra�lter over I, de�ne on

Q
n2I Xn the bounded pseudometric

edU (x; y) = U � lim
n2I

dn (xn; yn) .

The bounded metric
QU
n Xnspace obtained from

Q
nXn and the pseudometricedU , namely the quotient of QnXn with respect to the equivalence relation

x �U y

i¤
dU (x;y) = 0

endowed with the metric,

dU ([x]U ; [y]U ) =
edU (x;y) ,

is called themetric ultraproduct of the sequence (Xn; dn)n2I of metric spaces
with respect to the ultra�lter U over N. It is worth noting that, if each one (or
just U-a.a.) of the (Xn; dn) is complete, then

QU
n Xn is complete. In fact, sup-

pose (xn)n2I is a Cauchy sequence in
QU
n Xn where, without loss of generality,

8n 2 N, dU (xn;xn+1) < 2�n. De�ne, 8n 2 N, if xn =
�
(xnk )k2I

�
U ,

An =
�
k 2 I

��8i � n; d �xik; xi+1k

�
< 2�i

	
:

Observe that (An)n2N is a decreasing sequence of elements of U . De�ne now,
for every k 2 I, yk = xnk if k 2 AnnAn+1. If k 2

T
nAn, then

(xnk )n2N

is a Cauchy sequence in (Xk; dk), and hence it has a limit xk. In this case,
de�ne yk = xk. Since A1 2 U , it is well de�ned the element y =

�
(yk)k2I

�
of
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QU
n Xn. I claim that y is the limit of the sequence (xn)n2N. In fact, for every

n 2 N and k 2 An,
d (yk; x

n
k ) � 2�n

and hence
dU (y;xn) � 2�n:

Suppose now that (Hn)n2N is a sequence of Hilbert spaces and U is a non-
principal ultra�lter on N. De�ne

`1 (Hn)n2N =

(
(xn)n2N 2

Y
n2N

Hn

���� sup
n
kxnk < +1

)
.

Then, `1 (Hn)n2N is a Banach space with norm

(xn)n2N

 = sup
n2N
kxnk .

De�ne, for (xn)n2N ; (yn)n2N 2 `1 (Hn)n2N,

(xn)n2N ; (yn)n2N

�
= U � lim

n
hxn; yni

This de�nes a sesquilinear form on `1 (Hn)n2N and a scalar product on the

quotient
QU
n Hn of `1 (Hn)n2N with respect to the closed subspacen

(xn)n2N

���U � lim
n
kxnk = 0

o
:

I claim that the scalar product space obtained in this way is a Hilbert space.
In fact, the unit ball of

QU
n Hn as a bounded metric space with respect to the

distance induced by the norm, is a closed subset of the metric ultraproduct
of the balls of radius 2 of the Hn�s as uniformly bounded metric spaces with
respect to the distances induced by the norms. Therefore, it is complete and,
hence,

QU
n Hn is complete too. The Hilbert space

QU
n Hn constructed in this

way is called the ultrapower of the sequence (Hn)n2N of Hilbert spaces with
respect to the ultra�lter U .
If (An)n2N is a sequence of C*-algebras and U a ultra�lter over N, consider

`1 (An)n2N =

(
(xn)n2N 2

Y
n

Mn

���� sup
n
kxnk < +1

)
endowed with the norm 

(xn)n2N

 = sup

n
kxnk :

and pointwise operations. Then, `1 (An)n2N is a Banach algebra and

JU =
�
(an)n2N 2 `

1 (An)n2N

����U � limn2N kank = 0
�
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is a closed bilateral ideal of `1 (An)n2N. The quotient Banach algebra `
1 (An)n2N /JU

turns out to be a C*-algebra with involution�
(an)n2N

��
=
�
(a�n)n2N

�
.

Suppose now that (Mn; �n) is a sequence of tracial von Neumann algebras
and U is a nonprincipal ultra�lter on N. Then,

`1 (Mn)n2N =

(
(xn)n2N 2

Y
n

Mn

���� sup
n
kxnk1 < +1

)

is a Banach algebra with respect to the pointwise operations and the norm

(xn)n2N

 = sup
n
kxnk1 .

Moreover,

IU =
�
(xn)n2N

����U � limn2N kxnk2 = 0
�

is a norm-closed two-sided ideal of `1 (Mn)n2N. In fact, if (xn)n2N 2 IU and
(yn)n2N 2 `1 (M), then

U � lim
n2N
kxnynk2 �

�
sup
n
kynk1

�
U � lim

n
kxnk2 = 0

and hence (xnyn)n2N 2 IU and, analogously, (ynxn)n2N 2 IU . If (yn)n2N
belongs to the closure of IU and " > 0, there is (xn)n2N 2 U such that
supn kxn � ynk < "

2 . Thus,

fn 2 N j kynk2 < "g �
n
n 2 N

��� kxnk2 < "

2

o
2 U

and, since this is true for every " > 0, U � limn kynk2 = 0 and (yn)n2N 2 IU .
Since IU is a norm-closed two-sided ideal, it is possible to consider the quotient
Banach algebra MU = `1(M)

IU .
De�ne, for

�
(xn)n2N

�
,

�U
��
(xn)n2N

��
= U � lim

n
�n (xn) .

Observe that � is a well de�ned linear functional. In fact, if (xn)n2N 2 IU then���U � lim
n
� (xn)

��� = U � lim
n
j�n (xn)j

= U � lim
n

���Dbxn;b1E���
� U � lim

n
kxnk22 = 0
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Moreover, we have that���U ��(xn)n2N���� =
���U � lim

n
�n (xn)

���
= U � lim

n
j�n (xn)j

� U � lim
n
kxnk

� sup
n
kxnk

and hence, also ���U ��(xn)n2N���� � 

�(xn)n2N�


and �U is bounded of norm � 1. Moreover, if

�
(xn)n2N

�
2MU is positive, then

xn = y2n + zn, with U � limn kznk2 = 0 for U-a.a. n 2 N. Hence,

� ([(xn)]) = U � lim
n
�n (xn)

= U � lim
n
�n
�
y2n
�
+ U � lim

n
�n (zn)

= U � lim
n
kynk22 � 0

If, moreover,
U � lim

n
kynk22 = � ([(xn)]) = 0

then (yn)n2N 2 IU and [(xn)] = 0. This shows that � is positive and faithful.
It is clear that �U (1) = 1 and �U is tracial. Therefore, �U is a faithful normal
tracial state on

QU
n Mn, and de�ne an inner product

hx; yi = � (y�x)

on
QU
n Mn, whose associated norm is

kxk22 = � (x�x) .

Observe that the 1-unit ball of
QU
n Mn endowed with the distance induced by

the 2-norm coincides with the metric ultraproduct of the 1-balls of radius 1 of
the Mn�s endowed with the metric induced by their 2-norms. Therefore, it is a
complete metric space. It follows that

QU
n Mn is a von Neumann algebra and �

is normal on M .
I will now prove that

QU
n Mn admits a normal faithful representation on the

closed subspace of
QU
n L

2 (Mn; �n) generated by(�
(bxn)n2N� 2Y

n

UL2 (Mn; �n)
��(xn)n2N 2 `1 (Mn)n2N

)
.

De�ne, for every (xn)n2N ; (yn)n2N 2 `1 (Mn)n2N, if
�
(byn)n2N� is the corre-

sponding element in H,

e� �(xn)n2N� �(byn)n2N� = �(dxnyn)n2N� :
23



Observe that e� �(xn)n2N� �(byn)n2N� is well de�ned, since, if �(byn)n2N� = 0 then
U � limn kynk2 = 0 and also

U � lim kxnynk2 � sup
k
kxkk1 U � limn kynk2 = 0

and hence
h�
[xnyn

�
n2N

i
= 0. Moreover, e� �(xn)n2N� is clearly linear and

e� �(xn)n2N� �(byn)n2N�

 =



�(dxnyn)n2N�


= U � lim

n
kxnynk

� sup
k
kxkk1 U � limn kynk2

=


(xk)k2N



�(yn)n2N�



Thus, e� �(xn)n2N� can be extended to a bounded linear operator on H of norm
�


(xn)n2N

. Observe also that e� is an algebra homomorphism such that
e� �(xn)�n2N� �(byn)n2N� ; �(bzn)n2N�� =


e� �(x�n)n2N� �(byn)n2N� ; �(bzn)n2N��
= U � lim

n

D
[x�nyn; bznE

= U � lim
n
�n (z

�
nx

�
nyn)

= U � lim
n
�n
�
(xnzn)

�
yn
�

= U � lim
n
hcyn;dxnzni

=

�
(byn)n2N� ;e� �(xn)n2N� �(bzn)n2N��

=
De� �(xn)n2N�� �(byn)n2N� ; �(bzn)n2N�E

Thus, e� is a *-representation of `1 (M) on H. Moreover, if (xn)n2N 2 IU then,
for every (yn)n2N 2 `1 (Mn)n2N,

e� �(xn)n2N� ��(yn)n2N��

2 = U � lim

n
kxnynk22

= U � lim
n
�n (y

�
nx

�
nxnyn)

= U � lim
n
�n (xnyny

�
nx

�
n)

� U � lim
n
kynk21 kxnk

2
2

� sup
k
kykk1 U � limn kxnk2 = 0

and hence e� �(xn)n2N� = 0. Conversely, suppose that e� �(xn)n2N� = 0. Thus, if
yn = 1 for every n 2 N,

0 =


e� ��(xn)n2N�� �(yn)n2N�



= U � lim
n
kxnynk2

= U � lim
n
kxnk2
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and hence (xn)n2N 2 IU . This shows that e� induces a faithful *-representation
� of

QU
n Mn = `1 (Mn)n2N /IU on H. In order to show that � is normal, i.e.

ultraweak-ultraweak continuous, it is enough to show that the restriction of � to
the 1-unit ball is strong-weak continuous. Suppose thus that

�
xi
�
i2I is a net

in the 1-unit ball of
QU
n Mn converging strongly (or, equivalently, in 2-norm)

to 0. Thus,

lim
i2I

�
U � lim

n



xin

22� = 0.
Without loss of generality, xin 2 (Mn)+ for every i 2 I and n 2 N. Observe

that, then
����

xin
� 1
2

�
n2N

��
i2I

converges strongly (or in 2-norm) as well. If

(yn)n2N ; (zn)n2N 2 `1 (Mn)n2N, where yn; zn 2 (Mn)+, then

lim
i2I



�
�
xi
� �
(byn)n2N� ; �(bzn)n2N�� = lim

i2I
U � lim

n2N

D
[xinyn; bznE

= lim
i2I
U � lim

n
�
�
znx

i
nyn
�

� lim
i2I
U � lim

n
kznk1 kynk1 �

�
xin
�

� sup
k2N
kzkk sup

t2N
kytk lim

i2I
U � lim

n2N




�xin� 12 


2
2
= 0.

I will now prove that, if Mn is a factor for every n 2 N, then
QU
n Mn is a

factor. Suppose by contradiction, that
QU
n Mn is not a factor, hence the center

Z
�QU

n Mn

�
of
QU
n Mn is nontrivial. Since a von Neumann algebra is the norm

closure of its projections, there is a nontrivial projection p 2 Z
�QU

n Mn

�
. Since

p is nontrivial, � (p) = � 2 (0; 1). Without loss of generality, in case replacing
p with 1 � p, I can assume � 2 (0; 12 ]. Suppose (pn)n2N is a representative of
p. Since

� (p) = U � lim
n2N

�n (pn) = �,

then
�n (pn) 2

��
2
; 1� �

2

�
for U-a.a. n 2 N. Either �n (pn) � 1

2 for U-a.a. n 2 N or �n (pn) �
1
2 for U-a.a.

n 2 N. In the �rst case, for U-a.a. n 2 N, �n (pn) � �n (1� pn) and hence
pn - 1� pn and hence there is a partial isometry un such that u�nun = pn and
unu

�
n = qn?pn, then �n (u�nun � unu�n) � �

2 . De�ning u =
�
(un)n2N

�
2
QU
n Mn,

one gets a partial isometry such that

� (u�u� uu�) = U � lim
n
�n (u

�
nun � unu�n) �

�

2
> 0

and uu� 6= u�u. The case �n (pn) � 1
2 for U-a.a. can be reduced to the �rst
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one replacing pn with 1� pn. Since p = u�u is central,

uu� = uu�uu�

= upu�

= puu�

and
uu� � u�u

Moreover,
uu� � u�u,

and hence, by �niteness uu� = u�u and uu� � u�u = 0. Thus,

0 = U � lim
n
kunu�n � u�nunk2 =

= U � lim
n
kpn � qnk2

= U � lim
n
� (pn + qn)

= 2 � U � lim
n
� (pn) � � > 0;

which is a contradiction.
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Part II

So�c and hyperlinear
groups
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Chapter 4

Nonstandard methods

4.1 Superstructures

Let S be a set of atoms, i.e. elements that does not contain elements, and are
taken as primitive (examples of S could be N or R). Now, de�ne inductively

S0 = S

Sn+1 = Sn [ } (Sn)
and bS = [

n2N
Sn

We say that bS is the superstructure of S. It turns out that the set bS contains
virtually all mathematical objects that are needed in the practice when dealing
with S, such as functions, topologies, measures etc.
In the following, we will refer to the elements of the superstructure which

are not atoms as sets, and to elements of the superstructure which can be both
atoms and sets as entities.

Proposizione 4.1.1 Let S be a set of atoms and bS its superstructure. Then
1. 8n 2 N

Sn 2 Sn+1 2 bS
and the Sn are sets of the superstructure

2. 8n 2 N, Sn is transitive, as well as bS
3. if A is a set (of the superstructure) and B � A, then B is a set

4. if A is a set, } (A) is a set

5. if A is a family of sets, then
T
A is a set and, if A is itself a set, thenS

A is a set
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6. if A1; :::; An are sets, then A1 [ ::: [An and A1 � ::::�An are sets

7. if x1; :::; xn 2 bS, then fx1; :::; xng is a set
8. all relations and functions on sets are sets

Proposizione 4.1.2 If n 2 N, A 2 Sn is a set and B � A, then B 2 Sn.

Proof. By induction on n. If n = 0 there�s nothing to prove. If it is true for n
and A 2 Sn+1 = Sn [} (Sn) then, either A 2 Sn, in which case B 2 Sn � Sn+1
by induction hypothesis, or A 2 } (Sn). Hence also B 2 �} (Sn) and so B 2 Sn+1.

4.2 Formulas

We assume the notion of formula of �rst order language as known. A formula
is called a sentence if does not contain free variables. Here, as language,
we consider the language L of set theory f2g, with in addiction one simbol of
constant a for each entity a of the superstructure bS. A formula is said bounded
if every quanti�er is in the form

8x 2 A

or
9x 2 A

where A is either a constant or a variable.
Suppose that I is a map from bS to another superstructure bT and that �

is an L-formula. In the following, we will say that � is true if � is true with
respect to the interpretation that assigns to each constant symbol a of L the
corresponding element a of the superstructure bS and that interprets the symbol
2 as the usual set-theoretic relation of membership. Also, we will say that I� is
true if � is true with respect to the interpretation that assigns to each constant
symbol a of L the corresponding element I (a) of the superstructure bT and that
interprets the symbol 2 as the usual relation of membership.

4.3 Elementary embeddings

De�nizione 4.3.1 A map � : bS ! bT is called a nonstandard map if
1. �S = T

2. for every in�ne set A 2 bS, �A 6= f�a j a 2 Ag
3. � satis�es the transfer principle, namely a bounded formula � is true if
and only of �� is true
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Observe that, if A is a set of bS and we set
�A = f�a j a 2 Ag ;

then, by the transfer principle, �A � �A. The second requirement for a non-
standard map ensures that this inclusion is proper.
In [?] it is shown that nonstandard maps actually exists, by means of the

construction of ultraproducts.

4.4 Standard entities

De�nizione 4.4.1 An entity y of c�S is called internal standard or an hy-
perextension if there is an entity x of bS such that �x = y.

Teorema 4.4.2 (Internal standard de�nition principle) If �A is an in-
ternal standard set and � is a bounded formula with only free variable x and as
constants A1; :::; An, then

fx 2 �A j � (x;�A1; ::::;�An)g = � fx 2 A j � (x;A1; :::; An)g

is an internal standard set of c�S. Conversely, every internal standard set of c�S
can be written as above.

Proof. Let
B = fx 2 A j � (x;A1; :::; An)g

and observe that

8x 2 A (x 2 B  ! � (x;A1; :::; An)) :

Hence
8x 2 �A (x 2 �B  ! � (x;�A1; :::;

�An))

B � A

and
�B � �A:

Then
�A = fx 2 �B j � (x;�A1; :::;�An)g

because
�A = fx 2 �A j x = xg :
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4.5 Superstructure monomorphisms

De�nizione 4.5.1 A map � : bS ! bT is a superstructure monomorphism
if it is one to one and

1. it preserves 2 and =: a 2 A i¤ �a 2 �A and a = b i¤ �a = �b

2. it preserves �nite sets: � fx1; :::; xng = f�x1; :::;� xng

3. it preserves �nite sequences: � (x1; :::; xn) = (�x1; ::::;� xn)

4. it preserves insiemistic operations: � (A [B) = �A [ �B, � (A \B) =
�A \ �B, � (AnB) = �An�B, � (A�B) = �A� �B, � (

S
A) =

S �A

5. it preserves sections of relations: if ' 2 A1 � :::�An is an n-ary relation
and i 2 f1; 2; :::; ng, then the set of x 2 �Ai such that, for some a1 2
�A1; :::; ai�1 2 �Ai�1; ai+1 2 �Ai+1; :::an 2 �An,

(a1; ::; ai�1; x; ai+1; :::; an) 2 �'

is the nonstandard extension of the set of x 2 Ai such that, for some
a1 2 A1; :::; ai�1 2 Ai�1; ai+1 2 Ai+1; :::an 2 An,

(a1; ::; ai�1; x; ai+1; :::; an) 2 '

6. it commutes with permutations of variables: if ' 2 A1 � ::::�An is an n-
ary relation, � a permutation of f1; 2; :::; ng and  is the formula obtained
by ' permuting the variables according to �, namely (a1; :::; an) 2 ' if and
only

�
a�(1); :::; a�(n)

�
2  , then � is the formula obtained by ' permuting

the variables according to �

It can be easily seen by transfer that a map satisfying the transfer principle
is s superstructure monomorphism. The nontrivial fact, which is proven for
example in [?], is that also the converse is true.
We can apply the internal standard de�nition principle to relations, obtain-

ing the following internal standard de�nition principle for relations.

Proposizione 4.5.2 If B1; :::; Bn 2 bS and � is a bounded formula with con-
stants C1; :::; Ck in with free variables x1; :::; xn, then

f(x1; ::::; xm) 2 �B1 � :::� �Bn j � (x1; :::; xn;� C1; :::;� Ck)g =
= � f(x1; :::; xn) 2 B1 � :::�Bn j � (x1; :::; xn; C1; ::::; Ck)g

is an internal standard relation. Also, every n-ary internal standard relation
has this form.

Proof. It follows from the standard de�nition principle and the fact that � is
a superstructure embedding.
The following theorem can be easily proved by means of the transfer princi-

ple.
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Teorema 4.5.3 If � : bS ! bT is a nonstandard map, A;B; f 2 bS and f is a
function from A to B (and we write f : A ! B), then �f is a function from
�A to �B, and also

1. f is one-to-one i¤ �f is

2. f is onto i¤ �f is

3. dom (�f) = �dom (f)

4. ran (�f) = �ran (f)

5. 8a 2 A, � (f (a)) = (�f) (�a)

6. for all C � A, �
�
fjC
�
= (�f)jC

7. for all C � A, � (f [C]) = (�f) [�C].

4.6 Internal elements

In the following, let � : bS ! c�S be a �xed nonstandard map.
From the transfer principle, we obtain that, 8n 2 N, �Sn is transitive

�Sn 2 �Sn+1 2 c�S
and, if A 2 �Sn+1 then A � �Sn. Let

St =
n
�A
��� A 2 bSo

be the set of all internal standard elements.

De�nizione 4.6.1 An element of c�S is called internal if it belongs to some
internal standard set. a set A which is not internal is called external. The set
of all internal elements of c�S

J =
[
St

is called the internal universe associated with the nonstandard map �.

Observe that all atoms are internal.

Proposizione 4.6.2 The internal universe is a transitive subset of c�S. More-
over

St � J �
[
B2St

} (B)

and
J =

[
n2N

�Sn:
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Proof. Obviously, for all A 2 bS, �A � J . Hence, for all n 2 N, �Sn � J . If
x 2 bS, then 9n 2 ! such that x 2 Sn and hence �x 2 �Sn so �x 2 J : This
proves that St � J : Now let x 2 �A 2 J and observe that 9n 2 ! such that
A 2 Sn. Hence x 2 �A 2 �Sn and, by transitivity of Sn, x 2 �Sn and x � �Sn,
which proves

J �
[
n2N

�Sn

and
J �

[
f} (B) j B 2 Stg :

A formula � with constants in c�S is said internal if all its constants are
internal.

Teorema 4.6.3 (Internal de�nition principle) a set C 2 c�S is internal if
and only if can be written in the form

C = fx 2 B j � (x;B1; :::; Bk)g

where B is an internal set and � is a closed internal formula with internal
parameters B1; :::; Bk and only variable x.

Proof. The necessity is obvious, because

A = fx 2 A j x = xg

For the su¢ ciency, let n 2 N be such that B and all the constants of � belong
to �Sn. The formula

8y1; :::; yk; y 2 Sn9z 2 Sn+18x 2 Sn (x 2 z  ! (x 2 y ^ ' (x; y1; :::; yk)))

is true, because if A1; :::; An; A are elements of Sn, then, by the comprehension
axiom, there exists the set

A0 = fx 2 A j ' (x;A1; :::; Ak)g :

Moreover, by transitivity of Sn, A0 � Sn and A0 2 Sn+1. Now, by transfer,

8y1; :::; yk; y 2 �Sm9z 2 �Sn+18x 2 �Sn (x 2 z  ! (x 2 y ^ ' (x; y1; :::; yk)))

and, in particular, for B1; :::; Bk; B,

9z 2 �Sn+18x 2 �Sn (x 2 z  ! (x 2 B ^ ' (x;B1; :::; Bk))) :

Now, B 2 �Sn, hence B � �Sn+1 so that a z satisfying the formula above must
be

fx 2 B j ' (x;B1; :::; Bk)g

which thus belongs to �Sn+1 and to J .
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Corollario 4.6.4 a set C 2 c�S is internal if and only if it can be written in
the form

C = fx 2 �B j � (x;B1; :::; Bk)g

where B 2 bS and � is a bounded formula with only free variable x and internal
parameters B1; :::; Bk.

Proof. It follows from the internal de�nition principle and the fact that every
internal set is contained in a internal standard set.

Proposizione 4.6.5 The internal universe J is closed under

1. the usual insiemistic operations: union, intersection, di¤erence, cartesian
product

2. domain and range of functions

3. section of relations, where if ' is an n-ary relation and 1 � j � n, its j-th
section is the set

fx j 9y1; ::; yj�1; yj+1::; yn, (y1; :::; yj�1; x; yj+1; :::; yn) 2 'g

4. image and inverse image under internal functions

5. composition of relations

Proof.

1. Let A;B 2 J , and n 2 N such that A;B 2 �Sn, then

A [B = fx 2 �Sn j x 2 A _ x 2 B g

A \B = fx 2 A j x 2 B g

AnB = fx 2 A j x =2 B g

A�B = fz 2 � (Sn � Sn) j9x 2 A9y 2 B (z = (x; y))g[
A = fx 2 �Sn j 9y 2 A (x 2 y)g\
A = fx 2 �Sn j 8y 2 A (x 2 y)g

are internal by the internal de�nition principle.

2. If f 2 �Sn then

dom (f) = fx 2 �Sn j 9y 2 �Sn;9z 2 f ((x; y) = z)g

and
ran (f) = fx 2 �Sn j 9y 2 �Sn;9z 2 f ((y; x) = z)g :

3. The proof is very similar to the one of the previous points.
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4. If A; f 2 �Sn then

f [A] = fy 2 ran (f) j 9x 2 A;9z 2 f ((x; y) = z)g

and
f�1 [A] = fx 2 dom (f) j 9y 2 A;9z 2 f ((x; y) = z)g :

5. If ' and  are binary relations (the case of k-ary relation for k arbitrary
is similar), and '; 2 �SN , then

 � ' = f(x; z) 2 � (SN � SN ) j 9y 2 �SN , (x; y) 2 ', (y; z) 2  g :

Osservazione 4.6.6 If A � J , in general
S
A =2 J (but it does if A 2 J ).

Also, if C � B 2 J , in general C =2 J (but C � J).

We can apply the internal de�nition principle to relations, obtaining the
following internal de�nition principle for relations.

Proposizione 4.6.7 An n-ary relation ' is internal if and only if there exist
internal entities B1; :::; Bn and a bounded formula � with free variables x1; :::; xn
and possibly some internal parameters, such that

' = f(x1; :::; xn) 2 B1 � ::::�Bn j � (x1; ::::; xm)g :

Proof. It follows from the internal de�nition principle and the closure of J
under insiemistic operations and sections of relations.

Note that, if x1; :::; xn are internal, then such are fx1; :::; xng and (x1; :::; xn),
because if k 2 N is such that x1; :::; xn 2 �Sk then

fx1; :::; xng = fy 2 �Sk jy = x1 _ ::: _ y = xn g

and
(x1; :::; xn) 2 �Sk � :::� �Sk =

� (Sk � :::� Sk) :

In particular, since elements of internal entities are internal, an external subset
of an internal set must be in�nite.

Teorema 4.6.8 If A;B 2 bS, then
�} (A) = fM 2 } (�A) j M is internalg

� �BA� = nf 2 (�B)(�A) j A is internal
o
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Proof. Let C = } (A) ; D = BA and n 2 N such that A;B;C;D 2 Sn, hence
�A;�B;� C;�D 2 �Sn. Observe that, for all m � n,

8x 2 Sm (x � A ! x 2 C)

and
8x 2 Sm (x : A! B  ! x 2 D)

hence
8x 2 �Sm (x � �A ! x 2 �C)

and
8x 2 �Sm (x :

�A! �B  ! x 2 �D) :

Now, since �C; �D � �Sn, this proves that �C � fM � �A j M is internalg and
�D � ff : �A! �B j f is internalg. For the converse, let M � A be internal
and m 2 N, m � n, such that M 2 Sm, so we can apply the previous formula
obtaining M 2 �C. Analogously for BA.

Proposizione 4.6.9 If A is an internal set, the family }I (A) of internal sub-
sets of A is internal.

Proof. Let n 2 N be such that A 2 �Sn. We have that

}I (A) = fx 2 } (�Sn) j x is internal, x � Ag
= fx 2 �} (Sn) j x � Ag

is internal by internal de�nition principle.

Proposizione 4.6.10 If A;B are internal entities, the set F af all internal
functions with domain A and range contained in B and the set G of internal
functions with domain a (necessarily internal) subset of A and range contained
in B, are internal.

Proof. If n 2 N is such that A;B 2 �Sn and A�B 2 �Sn, we have

F = ff � �Sn j f is internal, f : A! B; g
= ff 2 �} (Sn) j f : A! B g

and
G = ff 2 �} (Sn) j9x 2 �} (Sn) , x � A, f : x! B g

are internal by the internal de�nition principle.

4.7 External entities

Teorema 4.7.1 Let � : bS ! c�S be a map satisfying the transfer principle, with
S in�nite. We have that � is a nonstandard map if and only if �B 6= �B for
some countably in�nite B 2 bS and, in this case, the following properties hold
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1. for all A 2 bS in�nite, �A is external

2. for A 2 bS in�nite, �} (A)  �} (A)  } (�A)

3. �SnS is nonempty and contains elements that are internal but not internal
standard.

Proof. The necessity of the condition is clear. For the su¢ ciency, it is enough
to prove that it implies the �rst point. If, by contradiction, �B is internal, then
also C = �Bn�B is internal. If hbnin2N is an enumeration of the elements of B,
consider the well order relation � on B induced by this enumeration. We have

8x 2 } (B)9y 2 x (8z 2 x, y � z)

hence
8x 2 �} (B)9y 2 x (8z 2 x, y� � z)

so that, in particular, when x = C 2 �} (B), we have a � �-minimal element y
in C. Now, for all n 2 N, we have

8z 2 B (z 6= b0 ^ ::: ^ z 6= bn ! bn+1 � z)

hence, by transfer, since y 6= �bi for all i 2 N (recall that y 2 C = �Bn�B), we
have that 8n 2 N, bn� � y. Now consider the function ' : B ! B de�ned by

' : bn 7!
�
bn�1 if n � 1
b0 if n = 0

and observe that
8x 2 B (x 6= b0 ! x � p (x))

hence, by transfer,
y� � (�p) (y)

Now, it is enough to prove that (�p) (y) 2 C. We have
�p : �B ! �B

hence (�p) (y) 2 �B. Now, if (�p) (y) = �bn for some n 2 N we have

8z 2 B (p (z) = bn ! z = bn+1 _ z = b0)

hence, by transfer, y = �bn or y = �b0, which can not be. Now, �B also cannot
be internal, otherwise C would be internal as di¤erence of two internal entities.
If now A is another in�nite set in bS, let  be a function from A onto B and
observe that

(�f) [�A] = �B

since

�B = f�b j b 2 B g
= f� (f (a)) j a 2 Ag
= f(�f) (�a) j a 2 Ag
= (�f) [�A] :
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Thus, if �A is internal, then �B is internal too, as image of an internal set
through a internal standard (hence, internal) function. As for the second point,
the �rst strict inclusion follows applying point one to } (A) and the second too
follows from point one and from the fact that �} (A) = } (�A) \ J . As for the
third part, �SnS is nonempty from the �rst point and from the fact that �a = a
for all a 2 S. Moreover, if b 2 �SnS then b is not internal standard, otherwise
there would be c 2 S such that

b = �c = c:

4.8 Nonstandard real analysis

In the following we will assume that a nonstandard map � : bS ! bT has been
chose, with R 2 bS.
It can be easily proven, by transfer, that �R, endowed with the operations

�+ and �� and the order relation � �, is an ordered �eld such that every upper
bounded internal subset has a least upper bound. Also the � map restricted
to R is an embedding of ordered �eld with image �R. In the following we will
identify R and its isomorphic copy �R. Moreover, �N is an ordered additive sub
semigroup of �R such that every internal subset has a minimum element. Since
� is a nonstandard map, we have R  �R and N  �N.
The elements of �R are called hyperreal numbers. We say that an hyperreal

number x is

� �nite if there is n 2 N such that jxj � n

� in�nite if it is not �nite

� in�nitesimal if x�1 is in�nite

The set of �nite and in�nitesimal numbers are denoted by Fin (�R) and
o (�R) respectively. We set also N1 = �NnN and R1 = �RnFin (�R).
Below there are some obvious facts about �nite, in�nite and in�nitesimal

numbers:

� Fin (�R) is a convex subring of �R

� x 2 R1 i¤, 8n 2 N, jxj > n, i¤, 8y 2 Fin (R)+, jxj > y i¤ 9z 2 �R, z
in�nite and jxj > jzj i¤ 9n 2 N1, jxj > n, i¤ 1

x is in�nitesimal

� x 2 o (�R) i¤, 8n 2 N, jxj < 1
n , i¤, 8y 2 Fin (

�R)+, jxj < y

Observe that Fin (�R), o (�R) R, N, R1 \ �R� are external, because they
are upper bounded in �R but have no least upper bound, while R1 \ �R+ and
N1 are external because they are lower bounded in �R but have not greatest
lower bound. Thus, R1 is external too, otherwise R1 \ �R+ would be internal.
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We say that two hyperreal numbers x; y are in�nitely close and we write
x � y if x�y 2 o (�R). It turns out that � is an equivalence relation. Moreover,
for all x1; x2; y1; y2 2 �R such that x1 � y1 and x2 � y2, we have

1. x1 � x2 � y1 � y2

2. x1x2 � y1y2 if x1; x2 are �nite

3. x1
x2
� y1

y2
if x1 is �nite and x2 is not in�nitesimal

Every �nite hyperreal number x is in�nitely close to one and only one stan-
dard real number, which is called its standard part st (x). This fact is easily
proven: if we set

A = fy 2 R j y < xg

then A is an upper bounded subset of R and so, by the completeness of R, it
has an upper bound (in R) which must be in�nitely close to x.
It is easily seen that st : Fin (�R) ! R is a (weakly) order preserving

epimorphism whose kernel is o (�R). Moreover, st is external, as such is its
domain Fin (�R). For every x 2 �R, we denote the set of hyperreal numbers
in�nitely close to x by mon (x) and call it themonad of x. It is easily seen that
mon (0) = o (�R) and, 8x 2 Fin (�R), mon (x) = x + o (�R). The monads are
the equivalence classes of the equivalence relation �, hence they form a partition
of �R.
One of the most important facts in nonstandard analysis is the so called

permanence principle. If � (x) is a predicate in the only free variable x with
possibly some internal parameters, the following two facts

1. 9n0 2 N, 8n 2 N, if n � n0 then � (n)

2. 8� 2 N1, � (�)

In fact, suppose that n0 2 N is such that

8n 2 N, if n � n0, then � (n)

By transfer, we obtain

8n 2 �N, if n � n0, then � (n)

and, in particular,
8n 2 �N, if n � n0, then � (n)

For the converse, suppose by contradiction that,

8n0 2 N, 9n 2 N, n � n0 and :� (n)

By transfer, we obtain

8n0 2 �N, 9n 2 �N, n � n0 and :� (n)
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and, in particular, taking n0 2 N1, we get n 2 N1 such that :� (n), contra-
dicting 2.
The implication 1 ) 2 is commonly referred to as overspill principle,

while the converse implication is referred to as underspill principle.
Applying the permanence principle to the formula

� (n) � 9m 2 N, m � n and � (m)

we deduce that the following two statements are equivalent:

1. 8n0 2 N, 9n 2 N, n � n0 and � (n)

2. 9� 2 N1, � (�)

It is customary to call also these implications overspill and underspill prin-
ciples.
A similar principle, the Cauchy permanence principle, holds for �R: if � (x)

is a predicate in the only free variable x with possibly internal parameters, the
statements

1. 9x0 2 R, 8x 2 R, if x � x0 then � (x)

2. 9� 2 �R positive in�nite such that � (�)

are equivalent, as well as the statements,

1. 8x0 2 R, 9x 2 R, x � x0 and � (x)

2. 9� 2 �R positive in�nite such that � (�)

are equivalent. The proof is the similar to the one of the overspill principle.
From the Cauchy permanence principle, considering the formula � (x) =

�
�
1
x

�
we obtain also the equivalence of

1. 9x0 2 R+, 8x 2 R+, if 0 < x < x0 then � (x)

2. 8" 2 �R positive in�nitesimal, � (")

and of

1. 8x0 2 R+, 9x 2 R+ such that 0 < x < x0 and � (x)

2. 9" 2 �R positive in�nitesimal such that � (")
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4.9 Enlargement and saturation

Throughout this section we assume that � : bS ! c�S is a nonstandard map, with
S in�nite.

De�nizione 4.9.1 Let k be a cardinal number. The elementary embedding � is
called

� a k-enlargement if, for every set A of entities of bS of cardinality < k
with the f.i.p., we have

T
�A 6= ?

� k-saturated if, for every set B of internal entities of c�S of cardinality
< k with the f.i.p., we have

T
B 6= ?.

We remark that it is customary to call an @1-saturated nonstandard map,
countably saturated.
We can give an equivalent characterization of k-enlargements and k-saturated

maps, in terms of satisfaction of relations.
If ' is a binary relation, we say that ' is satis�ed by b 2 ran (') on

A � dom (') if A� fbg � '. We call ' concurrent on A � dom (') if, for all
A0 � A �nite, 9b 2 ran (') such that ' is satis�ed by b on A0.

Teorema 4.9.2 If k is a cardinal number, then the following statements are
equivalent

� � is a k-enlargement if and only if, for every binary relation ' 2 bS with
cardinality < k, if ' is concurrent on A � dom ('), then there is b 2
ran (�') that satis�es �' on �A

� � is k-saturated if and only if for every (non necessarily internal) binary
relation ' of cardinality < k and for all (non necessarily internal) A �
dom ('), such that, 8a 2 A, ' [a] is internal, if ' is concurrent on A, then
' is satis�ed on A.

For a proof, see [?].
If � is a nonstandard extension, I is an in�nite set and � 2 �InI, then

fA � I j � 2 �Ag

is a nonprincipal ultra�lter over I. If � is a
�
2jIj
�+
-enlargement, then every

nonprincipal ultra�lter U over I is of this form. In fact, if � 2
T
�U , then

U = U �.
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Chapter 5

So�c and hyperlinear
groups

5.1 Standard de�nition and characterization

A bounded bi-invariant metric groups is a group which is also a metric space of
diameter � 2 such that the multiplication and inverse functions are continuous,
and the metric is invariant with respect to right and left multiplication.
If n 2 N, denote by Sn the permutation groups of n and by Un � Mn the

group of unitary n� n matrices over C. If �; � 2 Sn, de�ne

d (�; �) =
jfi 2 n j� (i) 6= � (i)gj

n
:

If A;B 2 Un, de�ne

d (A;B) =

sP
1�i;j�n jAi;j �Bi;j j

2

n

=

s
tr
�
(A�B)� (A�B)

�
n

=
kA�Bk2p

n

It is easily checked that Sn and Un are bounded bi-invariant metric groups of
diameter 1 and 2 respectively.
The function from Sn to Un sending � to the element A� of Un de�ned by

A� (ei) = e�(i)
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if fe0; ::; en�1g is the canonical base of Cn, is a homomorphism such that

d (�; �) =
jfi 2 n j� (i) 6= � (i)gj

n

=

���i 2 n �� ���1�� (i) 6= i
	��

n
�u

=
tr (1�A��1�)

n

=
tr ((1�A��1�) + (1�A���1))

2n

=
tr
�
(A� �A� )� (A� �A� )

�
2n

=
1

2
d (A�; A� )

2

If G is a discrete group, � is a metric group, " > 0 and F � G a �nite subset
of G, a (F; ")-almost embedding of G into � is a function ' : F ! � such that

� for every g; h 2 F , if gh 2 F ,

d (' (gh) ; ' (g)' (h)) < "

� if eG 2 F ,
d (' (eG) ; e�) < "

� for every g; h 2 F distinct,

d (' (g) ; ' (h)) � 1
2
diam (�)

De�nizione 5.1.1 A discrete group G is called so�c (resp. hyperlinear) if, for
every F � G �nite and " > 0, there is n 2 N and an (F; ")-almost embedding
' : F ! Sn (resp. ' : F ! Un)

Observe that every so�c groups is hyperlinear. It is not known if the reverse
implication holds.
For example, every residually �nite group is so�c. Remember that a residu-

ally �nite groups is a group that admits a separating family of homomorphism
into �nite groups or, equivalently, into �nite permutation groups. In fact, sup-
pose G is residually �nite and F � G is �nite. If � 2 (0; 1), there is N 2 N such
that, for every g; h 2 F with g 6= h, there is an embedding 'g;h : G! SN such
that d

�
'g;h (g) ; 'g;h (h)

�
� 1

2 . De�ne now,

� : G!
Y

(g;h)2F;g 6=h

SN ' SjF j(jF j�1)N

by
� (x) (g; h) = 'g;h (x) :
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Observe that � is a homomorphism and, if g 6= h 2 F ,

d (� (g) ;� (h)) � d
�
'g;h (g) ; 'g;h (h)

�
� 1
2

5.2 Nonstandard characterization

If (�n)n2N is a sequence of bounded bi-invariant metric groups and U is a ul-
tra�lter over N, de�ne

Q
n
U�n as the quotient of

Q
n �n with metric

d (a;b) = lim
n
dn (an; bn)

with respect to the normal subgroup(
a 2

Y
n

�n j d (a; e) = 0
)
.

If � is a nonstandard extension and � 2 �N, de�ne �� as the value at � of the
nonstandard extension of the sequence (�n)n2N and b�� as the quotient of �n
with respect to the normal subgroup

fg 2 �� jd (g; 0) � 0g

Lemma 5.2.1 If � 2 �N and U� = fA � N j � 2 �Ag, then
QU�
n �n can be

embedded in b��
Proof. De�ne the function 	 from

QU�
n �n to b�� sending �(gn)n2N� to [g� ].

Observe that 	 is well de�ned and one to one. In fact, [(gn)] = [(g0n)] i¤,
8" > 0, fn 2 N j d (gn; g0n) < "g 2 U i¤, 8" > 0, d (g� ; g0�) < " i¤ d (g� ; g0�) � 0
i¤ [g� ] = [g0� ]. Clearly, 	 is a homomorphism.
It is clear that a group G is so�c (resp. hyperlinear) i¤ every �nitely gen-

erated subgroup of G is so�c (resp. hyperlinear). Thus, there is no loss of
generality in considering only countable groups.

Teorema 5.2.2 If G is a countable discrete group and � is a c+-enlargement,
the following statements are equivalent

1. G is so�c

2. G can be embedded in bS� for some � 2 N1
3. G can be embedded in bS� for every � 2 N1
4. G can be embedded in

QU
n Sn for some nonprincipal ultra�lter U

5. G can be embedded in
QU
n Sn for every nonprincipal ultra�lter U

Proof.
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1) 5 Consider, a monotone decreasing vanishing sequence ("n) of positive real
numbers, an increasing sequence (Fn)n2N of �nite subsets of G such thatS
n Fn = G and functions 'n : G! Sn such that 'n is an (Fn; "n)-almost

homomorphism. If U is a nonprincipal ultra�lter over N, de�ne

� : G!
Y
n

USn

by
� (g) = ('n (g))n2N

If g; h 2 G and " > 0, there is N 2 N such that "N < " and fe; g; hg � FN .
Thus, for every n � N ,

d ('n (gh) ; 'n (g)'n (h)) < "

and
d ('n (e) ; e) < "

and, if g 6= h,

d ('n (g) ; 'n (h)) �
1

2
.

Thus,
d (� (gh) ;� (g)� (h)) < "

and
d (� (e) ; e) < "

Moreover, if g 6= h, then

d (� (g) ;� (h)) � 1
2

Since this is true for every " > 0,

� (gh) = � (g) � (h)

and
� (e) = e

5) 4 Obvious

5) 3 If � 2 N1, consider the ultra�lter U� . Thus, G can be embedded inQU�
n Sn and, by the previous lemma,

QU�
n Sn can be embedded in bS�

3) 2 Obvious

2) 1 Suppose F is a �nite subset of G and " > 0. Consider an embeddingb� : G ! bS� , which induces a function � : G ! S� such that, for every
g; h 2 F , d (� (gh) ;� (g) � (h)) � 0, d (� (e) ; e) � 0 and, for every g; h 2
F , g 6= h, d (� (g) ;� (h)) is not in�nitesimal. De�ne

� = inf fd (� (g) ;� (h)) j g; h 2 F; g 6= hg
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and observe that � is a positive non-in�nitesimal hyperreal number. Pick
N 2 N such that (1� �)N � 1

2 and consider the function 	 : G ! SN� '
S�N de�ned by

	(g) = (� (g) ; :::;� (g)) :

If g; h 2 G, then

d (	 (g) ;	(h)) = 1� (1� d (� (g) ;� (h)))N :

Thus, if g; h 2 F , then

d (	 (gh) ;	(g)	 (h)) � 0

d (	 (e) ; e) � 0

and, if g 6= h, then

d (	 (g) ;	(h)) = 1� (1� d (� (g) ;� (h)))N � 1� (1� �)N � 1
2
:

Consider thus the formula 9� 2 �N, 9f : F ! S� , such that, for every
g; h 2 F , d (f (gh) ; f (g) f (h)) < ", d (f (e) ; e) < " and, if g 6= h,
d (f (g) ; f (h)) � 1

2 . By transfer, one gets, 9n 2 N, 9f : F ! Sn such
that, for every g; h 2 F , d (f (gh) ; f (g) f (h)) < ", d (f (e) ; e) < " and, if
g 6= h, d (f (g) ; f (h)) � 1

2 . Since this is true for every " > 0 and F � G
�nite, G is so�c.

In the same way, it is proved the following

Teorema 5.2.3 If G is a countable discrete group and � is a c+-enlargement,
the following statements are equivalent

1. G is hyperlinear

2. G can be embedded in bU� for some � 2 N1
3. G can be embedded in bU� for every � 2 N1
4. G can be embedded in

QU
n Un for some nonprincipal ultra�lter U

5. G can be embedded in
QU
n Un for every nonprincipal ultra�lter U

These theorems justify the following

De�nizione 5.2.4 If U is a nonprincipal ultra�lter over N, the ultraproductQU
n Sn (resp.

QU
n Un) is called a universal so�c (resp. hyperlinear) group.
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Part III

Continuum logic and the
order property
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Chapter 6

Logic for metric structures

6.1 Languages for operator algebra

A language L consists of

� a set S of sorts, whose elements are meant to represent spaces. To every
S 2 S, it is associated a symbol dS and directed set DS of domains. For
every D 2 DS a natural number KD is given

� sorted function symbols f : S1 � :::� Sn ! S together with, for every
choice of domains Di 2 DSi for i 2 f1; 2; :::; ng, and every j 2 f1; 2; :::; ng,
a domain DD1;:::;Dn

f 2 DS and a real valued function of real variable

�D1;:::;Dn

f;j vanishing in 0. A zerary sorted function symbol stands for a
sorted constant symbol.

� sorted relation symbols R on S1 � :::: � Sn together with, for j 2
f1; 2; :::; ng and every choice of Di 2 DSi for i 2 f1; 2; :::; ng, a real valued
function of real variable �D1;:::;Dn

R;j and a positive real number ND1;:::;Dn

R

An L-structure M is a function that assigns, to every sort S, a metric space
M (S) with metric dMS and, to every domain D relative to S, a subset M (D)
of M (S) complete with respect to dS of diameter � KD, in such a way that,
if D � D0, then M (D) �M (D0), and the family fM (D) : D 2 DSg is a cover
of M (S). Moreover, to every sorted function symbol f : S1 � ::: � Sn ! S
is associated a function fM : M (S1) � ::: �M (Sn) ! M (S) such that, for
every choice of Di 2 DSi for i 2 f1; 2; :::; ng, the restriction of f to M (D1) �
::::M (Dn) is uniformly continuous with modulus of continuity relative to the

j-th variable �D1;:::;Dn

f;j and has image contained in M
�
DD1;::;Dn

f

�
. Finally, to

every sorted relation symbol R it is a associated a real valued function R on
M (S1)�::::�M (Sn) such that, for every choice of Di 2 DSi , i 2 f1; 2; ::; ng, the
restriction of R to M (D1)� :::�M (Dn) is uniformly continuous with modulus
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of continuity �D1;::::;Dn

R;j relative to the j-th variable, and bounded in absolute

value by ND1;::::;Dn

R .
In the following, I will use the following notation. If L is a language, a

multisort S indicates a �nite sequence (S1; :::; Sn) of sorts of L. A multi-domain
D of multi-sort S is a �nite sequence (D1; :::; Dn) of domains such that Di 2 DSi
for every i.
For example, the language LC� of C*-algebras consists of two sorts U (for

the C*-algebra itself) and C (to represent a copy of the complex numbers). The
domains relative to U are fDngn2N, to be seen as the balls of radius n 2 N, and
the domains for C are fBngn2N, to be seen as the discs of radius n 2 N. The
sorted relation and function symbols are:

� the constant 0 in U and the constants 1; i in C

� a binary function symbol f : C� U ! U , to be interpreted as the multi-
plication by scalars

� a unitary function symbol � : U ! U , for the involution of U , and : C!
C, for the complex conjugation

� binary function symbols +; � : U � U ! U and +; � : C� C! C

The metric symbols dU and dC relative to U and C should be seen as the
norm distance and the Euclidean distance respectively. It is straightforward to
write down range domains and moduli of continuity � associated to the sorted
function symbols and the domains.
The language LTrvN for tracial von Neumann algebras consists of the sorts

U and C, together with domains fDngn2N and fBngn2N, where Dn has to be
interpreted as the ball of radius n in operator norm. The metric symbols dU
relative to U has to be seen as the 2-distance induced by the trace. The sorted
relation and function symbols are, in addition to the previous ones,

� the constant 1 in U

� a function symbol � : U ! C for the trace

� a unary relation symbol Re on C for the real part

The range domains and moduli of continuity are easily determined
It is worth observing that the operator norm is not in this case part of the

language, and is not even de�nable, since it is not continuous with respect to
the 2-norm.
The language for bounded bi-invariant metric group has only one sort S

and a unique domain D = S. There is a binary function symbol �, for the
operation, a unary function symbol j for the inverse and constant symbol e
for the multiplicative identity. The metric is bounded by 2 and the uniform
continuity module for the operation in each variable and for j is the identity
function.
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6.2 Formulas, models and theories

We suppose that, for every sort S 2 S, we have variables of sort S. A variable
of sort S is also a term of sort S. If f : S1 � ::::� Sn ! S is a sorted function
symbol and if t1; :::; tn are terms of sort S1; :::; Sn, then f (t1; :::; tn) is a term of
sort S. If R is a sorted relation on S1 � :::� Sn and t1; :::; tn are terms of sort
S1; :::; Sn, then R (t1; :::; tn) is a basic formula. If '1; :::; 'n are formulae and
g : Rn ! R is a continuous function, then f ('1; :::; 'n) is a formula. Finally, if
' is a formula containing a variable x of sort S and D 2 DS , then infx2D ' (x)
and supx2D ' (x) are formulae. A variable x of sort S in a formula ' is called
bounded if it is preceded by infx2D or supx2D for some D 2 DS , free otherwise.
A formula without free variables is called a sentence.
The interpretation 'M of a formula ' in a structure M is de�ned in the

obvious way. If ' is a sentence, then 'M is a real number. The set of sentences '
such that 'M = 0 is called the complete theory Th (M) ofM . Since, for every
sentence ' and every real valued continuous function of real variable g, g (') is
a sentence, the complete theory ofM determines 'M for every sentence '. Two
structuresM and N are said to be elementarily equivalent if Th (M) = Th (N).
It can be proved by induction on the complexity of a formula ' with free

variables x = (x1; :::; xn) of multi-sort S = (S1; :::; Sn) that, for every multi-
domain D = (D1; :::; Dn) relative to S, there is a positive real number ND

' and

a real valued function of a real variable �D' vanishing in 0 such that, for every
L-structure M , the restriction of 'M to M (D1) � ::: �M (Dn) attains values

in
h
�ND

' ; N
D
'

i
and admits �D' as modulus of continuity.

A theory T will be a set of formulae. We say that a structure M is a model
of T , and write M j= T , i¤ T � Th (M).�
IfM is an L-structure and A �M de�ne the language L (A) as the language

obtained from L adding a constant symbol ea of sort Si in D for every i 2
f1; 2; ::::; ng, D 2 DSi and a 2 Ai \ M (D). A formula ' in the language
L (A) is called a L-formula with parameters from A. Denote by (M;a)a2A the
L (A)-structure obtained by M interpreting ea as a for every a 2 A.
A map � : M ! N is an elementary embedding if, for all formulae  with

parameters in M ,  M =  N � �. It can be proved that every isomorphism
� : M ! N is an elementary embedding and every elementary embedding
� : M ! N is an isomorphism onto its image. None of these implications
reverses in general.

6.3 Axiomatizability

A category C is said to be axiomatizable if there is a language L, an L-theory
T and a set of conditions � such that the category C (T ;�) that has as objects
the models of T and as morphisms the maps between models that preserve all
the conditions in �, is equivalent to C.
A class of algebras is said axiomatizable is such is the category that has
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the isomorphism class of algebras as objects and morphisms of algebras as mor-
phisms.
As example of possible choices of �, if � is the set of all conditions, then the

morphisms in C (T ;�) are exactly the elementary embeddings. If � is the set of
conditions ' � r and r � ' for ' basic formula, then the morphisms in C (T ;�)
are the isomorphisms onto the image, and if � is the set of conditions ' � r for
' basic formula, then the morphisms in C (T ;�) are the homomorphisms.
Observe that, if � ; � are terms in a language L of same sort S, the axiom

scheme
sup
x2D

dS (� (x) ; � (x))

for D 2 DS , forces in any model to be �M = �M on M (S). Analogously, if
'; are formulae with free variables x1; :::; xn of sort S1; :::; Sn, then the axiom
scheme

sup
x12D1

sup
x22D2

::: sup
xn2Dn

max (0; ( (x1; ::; xn))� ' (x1; ::; xn))

where Di ranges in DSi for every i 2 f1; 2; :::; ng, forces to be  � ' onM (S1)�
::::�M (Sn)
I will consider now the axioms for C*-algebras, on the language LC� previ-

ously introduced. It is not di¢ cult to give axioms that ensure that U is inter-
preted as a C*-algebra. In order to ensure that, 8n 2 N, Dn is interpreted as
the n-ball of U , one has to add the following axioms (writing kxk for dU (x; 0)):

� supx2D1
kxk � 1 (D1 is contained in the unit ball)

� for every n 2 N, supa2Dn
infb2D1 dU

�
b; a
kak+ 1

n

�
= 0 (the open unit ball is

contained in D1)

� for every n 2 N, supa2Dn
infb2D1

dU
�
1
na; b

�
=

� 0 ( 1nDn � D1)

� for every n 2 N, supb2D1
infa2Dn

dU
�
1
na; b

�
= 0 ( 1nDn is dense in D1)

The �rst two of these axioms implies that D1 is interpreted as the unit ball,
and the remaining two implies that Dn = nD1 is interpreted as the n-ball. In
order to ensure that C is interpreted as the �eld of complex numbers with the
Euclidean distance and, for every n 2 N, Bn is interpreted as the n-disc of C,
to the same axioms we enlisted for U one has to add i2 + 1 and

sup
�2B1

inf
�2B1

inf
�2B2

min fj�+ j�j 1 + j�j ij ; j�� j�j 1 + j�j ij ; j�+ j�j 1� j�j ij ; j�� j�j 1� j�j ijg ,

ensuring that f1; ig is a base for C as a vector space over R.
It is not di¢ cult to check now that there is an equivalence of categories

between the category of isomorphism classes of C*-algebras and the category
C (TC� ;�), where TC� is the theory of C*-algebras we have just de�ned and �

51



is the set of conditions of form ' � r for ' formula and r real number (ensuring
that morphisms in C (TC� ;�) are *-homomorphisms of C*-algebras).
I�ll consider now that axioms for von Neumann algebras. As for C*-algebras,

it is not di¢ cult to write axioms that ensure that U is interpreted as a tracial
*-algebra (it is worth reminding here that the operator norm is not part of the
structure nor even a de�nable function). The axiom scheme

sup
a2Dn

�
Re
�
� (a�a)� dU (a; 0)2

��2
for n 2 N forces

kak22 = tr (a�a) ,

where kak2 = dU (a; 0).
In order to ensure that U is a von Neumann algebra and Dn is interpreted

as the operator norm unit ball, one has to add the following axioms

� for every n 2 N,

sup
a2Dn

sup
x2D1

max f0; kaxk2 � n kxk2g

forcing left multiplication by a 2 Dn to be a bounded linear operator on
U of norm � n

� for every n 2 N,

sup
a2Dn

inf
b2D1

inf
c2Dn

inf
d2Dn

(ka� bck2 + kc� d
�dk2 + kb

�b� 1k2)

expressing the fact that every a 2 U has a polar decomposition in U

�
sup
a2D1

sup
b2D1

inf
c2D1





c� a+ b

2






2

ensuring that D1 is convex

I now claim this theory T TrvN de�nes exactly the category of tracial von Neu-
mann algebras.
In fact, if M is a model of T TrvN , then M (U) is a pre-Hilbert space with

respect to the scalar product hx; yi� = � (y�x). Moreover, left multiplication by
a 2 Dn is a bounded linear operator of norm � n. Moreover, for every x; y 2M ,

ha�x; yi� = � (y�a�x)

= �
�
(ay)

�
x
�

= hx; ayi�

which shows that the adjoint of the left multiplication by a is the left multipli-
cation by a�. Thus, it is de�ned a faithful *-representation � of M (U) on the
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Hilbert completion L2 (M (U) ; �) of (M (U) ; h�; �i� ). The restriction of � to D1

is a homeomorphism with respect to the 2-norm topology on D1 and the strong
topology on B

�
L2 (M (U) ; �)

�
. In fact, if (zi)i2I is a net in D1 converging in

2-norm to 0 then, for every x 2M (U), since kxk2 = kx�k2, if x 2 Un,

kziuk2 = ku�z�i k2
� n kz�i k2
= n kzik2 �!i!1

0

Conversely, if
(� (zi))i2I

converges to 0 strongly, evaluating in 1 one gets limi2I kzik2 = 0. Since D1 is
complete in 2-norm and is mapped homeomorphically onto the norm unit ball of
� (M (U)), it follows that the latter is strongly closed and hence � (M (U)) (and
M (U) as well) is a von Neumann algebra. It remains to show that, 8n 2 N,
Dn is interpreted as the operator norm n-ball of M (U). Since we still have
the axioms that guarantee that Dn = nD1, it is enough to prove that D1

is interpreted as the operator norm unit ball. By the �rst of the additional
axioms, D1 is contained in the operator norm unit ball. By the second of the
additional axioms, every unitary element belongs to D1 and D1 is convex. By
the Russo-Dye theorem, every element of the open operator norm unit ball is
convex combination of unitaries. This implies that open operator norm unit
ball is contained in D1. By completeness of D1, this is enough to conclude.
In order to axiomatize the class of tracial factors, consider the terms

� (x) = kx� � (x) 1k2

and
� (x) = sup

y2D1

k[x; y]k2 ,

where [x; y] = xy � yx is the commutant of x and y. Thus, if one adds to the
axioms for von Neumann algebras the axiom

sup
x2D1

max f0; (� (x)� � (x))g

which implies � � � in a model, then one gets an axiomatization of tracial von
Neumann factors. In fact, if (M; �) is a tracial factor and x 2M is an element
of operator norm � 1, then, by the Diximier property of the trace in a factor,
for every " > 0 there is a convex combination

Pn
j=1 �jujxu

�
j such that





� (x) 1�

nX
j=1

�jujxu
�
j







 � "
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and hence

� (x) = kx� � (x) 1k2

� "+







x�
nX
j=1

�jujxu
�
j








2

� "+
nX
j=1

�j


x� ujxu�j

2

= "+
nX
j=1

�j k[x; uj ]k2

� "+ sup
y2D1

k[x; y]k2 = � (x) + "

Since this is true for every " > 0, the thesis is proved Conversely, assume
� (x) � � (x) for every x in the operator norm unit ball of a von Neumann
algebra M . If M is not a factor, then there is a nontrivial central projection p
in M , with 0 < � (p) < 1. For this element, we have � (p) = 0 and

� (p) = kp� � (p) 1k
1
2
2

= �
�
p� 2� (p) p+ � (p)2 1

� 1
2

=
�
� (p)� 2� (p)2 + � (p)2

� 1
2

=
�
� (p)� � (p)2

� 1
2

> 0 = � (p)

contradicting the assumption.
In order to axiomatize II1 factors, it is enough to require the trace to attain

an irrational value on some projection. Fix thus an irrational number � 2 (0; 1)
and consider the axiom

inf
a2D1

max
�


a�a� (a�a)2




2
; j� (a�a)� �j

�
I claim that adding this axiom to the list of axioms for tracial factors gives
an axiomatization of II1 factors. In fact, if M is a II1 factor, then it has a
projection p such that � (p) = d (p) = �. Conversely, if a �nite factor is not
II1, then it is of type In for some n 2 N, i.e. it is isomorphic to Mn, and every
nontrivial projection in Mn has dimension k

n for k 2 f1; ::::; n� 1g.
The axioms for bounded bi-invariant metric groups are the usual axioms for

groups, with the addition of

sup
x;y;z2S

(jd (xz; yz)� d (x; y)j+ jd (zx; zy)� d (x; y)j)

for the by-invariance of the metric.
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6.4 Metric ultraproducts

Suppose L is a language as de�ned above, (Mi)i2I is a sequence of L-structures
and U is a nonprincipal ultra�lter on I. The ultraproduct M =

QU
i2IMi will

be a structure over the same language L. For every sort S 2 S of L, consider

eXU
S =

(
(ai)i2I 2

Y
i2I

Mi (S) j for some D 2 DS , for U-a.a. i 2 I, ai 2Mi (D)

)
awith the pseudometricedS �(ai)i2I ; (bi)i2I� = U � limi2I dMi

S (ai; bi) .

De�ne the interpretation of the sort S in
QU
i2IMi as the metric space XU

S

obtained from eXU
S and the pseudometric edS . If D 2 DS , de�ne��

(ai)i2I
�
j for U-a.a. i 2 I, ai 2Mi (D)

	
BeingM (D) the metric ultraproduct of the complete metric spaces (Mi (D))i2I ,
M (D) is a complete metric space. If f : S1 � ::::� Sn ! S is a sorted function
symbol, the interpretation of f inM is the function fromM (S1)� :::::�M (Sn)
to M (S), de�ned by

fMi

�h�
a1i
�
i2I

i
; :::;

�
(ani )i2I

��
=
h�
fMi

�
a1i ; :::; a

n
i

��
i2I

i
If R is a sorted relation symbol on S1 � ::: � Sn, the interpretation of R in M
is the function from M (S1)� :::::�M (Sn) to R de�ned by

RM = U � lim
i2I

RMi

Observe that, by the boundedness and uniform continuity requirement on RMi

and fMi restricted to domains, RM and fMi are well de�ned and satisfy the
same boundedness and uniform continuity requirements.
If Mi = M for every i 2 I, the ultraproduct is called ultrapower of M and

denoted by MU .

Teorema 6.4.1 (×os) If (Mi)i2I is a family of L-structures, U is a ultra�lter
on I and M =

QU
i Mi, then

1. for every L-formula ' with free variables x1; :::; xn of sorts S1; :::; Sn,

'M
�h�

a1i
�
i2I

i
; ::::;

�
(ani )i2I

��
= U � lim

i2I
'Mi

�
a1i ; :::; a

n
i

�
2. every L-sentence �,

�M = U � lim
i2I

�Mi

Proof. The proof of point 1 is easily done by induction on the complexity of
the formula. Points 2 follows.
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6.5 Character density of languages

If L is a language, T is an L-theory, '; are formulae with free variables x of
sort S and D = (D1; :::; Dn), where Di 2 DSi 8i 2 f1; 2; :::; ng, we set

dT
D
('; ) = sup

�
j' (a)�  (a)j

�� a 2M �
D
�
, M j= T

	
This de�nes a pseudo-metric on the set of such formulae, whose character density
is denoted by �L

�
D; T

�
. The character density of the L-theory T is

�L (T ) =
X
D

�L
�
D; T

�
.

If T is the empty theory, dT
D
is denoted by dD, �L

�
D; T

�
by �L

�
D
�
and �L (T )

by �L. We call �L the character density of the language.
The character density of an L-structure M is

� (M) =
X
S

� (M (S))

where S ranges over all sorts and � (M (S)) is the character density of the metric
space

�
M (S) ; dMS

�
.

Lemma 6.5.1 (Tarski-Vaught criterion) If N � M are L-structures and,
for every choice of domains D of sorts S, there is a set FD ofL-formulae which
is dense in the set of formulae with parameters in N and free variables x of
sorts S with respect to the metric dD such that, for every '; 2 F

inf
a2N(D)

' (a) = inf
a2M(D)

'
�
b
�
,

then N �M

Proof. By density of FD, the condition holds for every formula with parameters
in N and free variables x of sorts S. The fact that 'M = 'N for every such
formula follows now by induction on the complexity.

Teorema 6.5.2 (Downward Löwenheim-Skolem) If M is an L-structure
and X �M , then there is N �M such that X � N and � (N) � �L (Th (M))+
� (X)

Proof. For every choice of domains, �x a set FD of formulae which is dense in
the set of formulae with parameters in N and free variables x of sorts S with
respect to the metric dD, in such a way that������

[
D

FD

������ � �L (Th (M))
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De�ne recursively sets (Xn)n2N and (En)n2N such that, 8n 2 N, En is dense in
Xn, � (Xn) � �L (Th (M)) + � (X) and, for every positive rational number r,
k 2 N, domain D and formula ' 2 FD with parameters from

S
j<nEn, if

inf
x2M(D)

' (x) � r

then there is b 2 Xn such that

'
�
b
�
� r + 1

k

By the Tarski-Vaught criterion, the closure of
S
nXn is an elementary submodel

of M containing X with character density at most � (X) + �L (Th (M)).
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Chapter 7

Stability

7.1 Types

If L is a language, "' (x) � r" is a condition and D a choice of domains com-
patible with x, we say that it is satis�ed in an L-structure M by a 2M

�
D
�
if

'M (a) � r. A set � (x) of such conditions is satis�ed by a 2M if every element
of � (x) is satis�ed by a 2M

�
D
�
.

Proposizione 7.1.1 (Compactness) If � (x) is a set of conditions, TFAE

1. � (x) is D-satis�able, i.e. there is an L-structure M and a 2M
�
D
�
that

satis�es � (x)

2. � (x) is �nitely D-satis�able, namely every �nite subset of � (x) is D-
satis�able

3. � (x) is �nitely approximately D-satis�able, namely for every �nite subset
F of � (x) and every " > 0 there is an L-structure M and a 2 M

�
D
�

such that, for every condition "' � r" in F , a satis�es "' � r + ""

A satis�able set of conditions � (x) is called a partial D-type. If M is an
L-structure and a 2M

�
D
�
satis�es every condition in � (x), then a is called a

realization of � (x) in M . A maximal partial D-type is called a D-type. If M
is an L -structure and a 2M

�
D
�
,

tpM (a) =
�
"' � r"

��'M (a) � r	
is the type of a in M . It is easily seen that this is a type. Conversely, by
compactness, every type has this form. More precisely, if p is a D-type and a is
a realization of p in M , then p = tpM (a).
De�ne SL

�
D
�
the set of D-types in the language L. If ' is a formula,

then 'M (a) does not depend on the particular realization a of p in M chosen.
Therefore, it is well de�ned the real number 'p = 'M (a), where a is a realization
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of p in M . Thus, any formula can be seen as a function from SL
�
D
�
to R.

Moreover, two formulae are equivalent i¤ the functions they de�ne are the same.
If "' � r" is a condition, denote by [' � r] the set of D-types that contain

the condition ' � r or, equivalently, such that 'p � r. Analogously, if �
is any partial type, de�ne [�] =

�
p 2 SL

�
D
�
j� � p

	
. The family of such

sets is a family of closed sets for a compact Hausdor¤ topology on SL
�
D
�
,

called the logic topology, which is the weakest topology making all the formulae
continuous. Moreover, a function turns out to be continuous i¤ it is a uniform
limit of formulae.
On SL

�
D
�
one can de�ne also a metric d, setting

d (p; q) = inf
�
dM
�
a; b
� �� a; b 2M satisfy p; q respectively

	
where the in�mum is actually a minimum by compactness. The topology in-
duced by d is �ner than the logic topology. In fact, suppose (pi)i2I is a net
in [' � r] converging to p 2 SL

�
D
�
in this metric. If " > 0, there is a � > 0

such that, for every L-structureM , if dM
�
a; b
�
< � then

��'M (a)� 'M �b��� < ".
Thus, if i 2 I is such that d (pi; p) < � then, ifM is an L-structure and ai; a 2M
satisfy pi; p in M and dM (ai; a) < �, then " >

��'M (ai)� 'M (a)�� = j'pi � 'pj
and hence, since 'pi � r, 'p � r + ". Since this is true for every " > 0, 'p � r
and hence p 2 [' � r]. This shows that [' � r] is closed in the metric d. If F
is a logically closed subset, then F " =

T
n2N

�
q 2 N

�� 9p 2 F , d (p; q) < "+ 1
n

	
is still logically closed. Thus, SL

�
D
�
is a so called compact called topometric

space.
If T is a satis�able L-theory, then SL

�
D;T

�
is the closed subspace [T ] of

SL
�
D
�
of the types that can be realized in a model of T or, equivalently, that

contain T . If M is an L-structure and A �M , the set SL
�
D;A

�
of types over

A is by de�nition SL(A)
�
D;Th

�
(M;a)a2A

��
.

7.2 Saturation

If � is a cardinal, an L-structure is �-saturated if, for every A �M of character
density (or, equivalently, cardinality) < �, every type over A is realized in M .
As usual, @1-saturation is referred to as countable saturation. An L-structure
M is said saturated if it is � (M)-saturated, where � (M) is the character density
of M .
The classic Keisler theorem on ultraproduct holds without changes for the

logic for metric structures.

Proposizione 7.2.1 If L is a separable language, (Mi)i2I is a family of L-
structures and U is a countably incomplete ultra�lter over I, then the ultraprod-
uct M =

QU
i2IMi is countably saturated

Proof. Suppose p is a D-type over A � M , where A has cardinality � @0.

59



Observe that Y
i2I

UMi;
�
(ai)i2I

�
U

!
[(ai)i2I ]U2A

=
Y
i2I

U (Mi; ai)[(ai)i2I ]U2A

Thus, replacing L with L (A), where
�
(ai)i2I

�
U 2 A is interpreted as ai in Mi,

we can suppose A = ?. Suppose q = f"'n � rn" jn 2 Ng is a countable dense
subset of p. In order to show that p is realized in M , it su¢ ces to show that
q is realized in M . Consider a sequence fIngn2! of elements of I such that
I0 = I, In+1 � In 2 U for every n 2 ! and

T
n2N In = ?. De�ne recursively

J0 = I0 = I and, for every n 2 N,

Jn =

�
i 2 In \ Jn�1

����Mi j= inf
b2D

max

�
max
1�j�n

�
'j
�
b
�
�
�
rj +

1

n

��
; 0

��
2 U

De�ne now, for every i 2 I,

n (i) = min fn 2 ! j i =2 Jn+1 g .

If i 2 I and n (i) � 1, de�ne b (i) 2Mi

�
D
�
such that

Mi j= max
�

max
1�j�n(i)

�
'j
�
b (i)

�
�
�
rj +

2

n (i)

��
; 0

�
De�ne b =

h�
bi
�
i2I

i
2
QU
i2IMi. If n 2 N and i 2 Jn then n (i) � n and hence

Mi j= max
�
max
1�j�n

�
'j
�
b (i)

�
�
�
rj +

2

n

��
; 0

�
Since Jn 2 U , this implies thatY

i2I

UMI j= max
�
max
1�j�n

�
'j
�
b
�
�
�
rj +

2

n

��
; 0

�
and, since this is true for every n 2 N,Y

i2I

UMi j= max
�
max
n2N

�
'j
�
b
�
� rj

�
; 0

�

Proposizione 7.2.2 If L is a language and M;N are two elementarily equiva-
lent saturated L-structures of the same character density �, then M and N are
isomorphic

Proof. Suppose faigi<� and fbigi<� are dense subsets ofM and N respectively.
If i < � is an ordinal, write i = j + n where j is a limit ordinal and n 2 !. Say
that i is even (resp. odd) if such is n. Now I de�ne recursively sequences feaigi<�
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and
nebio

i<�
such that, for every i < k, if i = j+2n is even, then eaj+2n = aj+n,

if i = j + 2n + 1 is odd, then ebj+2n+1 = bj+n, and such that, for every i < �,

the structures (M;eaj)j<i and �N;ebj�
j<i

are elementarily equivalent. Suppose

these sequences have been de�ned for i < � = � + n, where � is a limit ordinal
and n 2 !. Suppose without loss of generality that n = 2m is even. De�neea� = a�+m and consider the complete D-type p of ea� 2M (D) over feaigi<�. If
q is the D-type over

nebio
i<�

obtained by p replacing every eai with ebi, then q is
a complete D-type and, by saturation of N , there is eb� 2 N (D) that satis�es
q. De�ne then eb�+1 = b�+m 2 N (D0) and �nd ea�+1 2 M (D0) as before. This
concludes that recursive construction. Now, since the structures (M;eai)i<� and�
N;ebj�

j<�
are elementarily equivalent, the function � sending eai to ebi is an

isometric isomorphism, that can be extended to an isometric isomorphism from
M onto N .

Corollario 7.2.3 If CH holds, ultrapowers of elementarily equivalent L-structures
of character density � c are isomorphic

7.3 Stability

If � is a cardinal and L is a language, a theory T is said to be �-stable if,
for every model M of T , every A � M of density character (or, equivalently,
cardinality) � � and choice of domains D, the space SL

�
D;A

�
of complete D-

types over A �M has character density � � with respect to the metric topology.
A theory is stable if it is �-stable for some �, unstable otherwise. Observe
that, by Lowenheim-Skolem, if L is separable, T is �-stable i¤, for every model
M of T of density character (or, equivalently, cardinality) � � and choice of
domains D, SL

�
D;M

�
has character density � �.

If  (x; y) is an L-formula, where x and y are of the same sort S, D is a
choice of domains compatible with x, " > 0 and M is an L-structure, de�ne the
following relation �D ;" on M

�
S
�
:

a �D ;" b

i¤
 M

�
a; b
�
2 [0; ")

and
 M

�
b; a
�
2 (1� "; 1].

Denote �D ;0 by �D .
An L-structure has the order property if there is a formula  (x; y) and a

compatible choice of domains D such thatM
�
D
�
contains an in�nite �D -chain.
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A sequence (Mn)n2N of L-structures has the order property if there is a
formula  (x; y) and a compatible choice of domains D such that, 8n 2 N,
9N 2 N such that, 8m � n, Mm contains a �D -chain of length m.
An L-structure M has the approximate order property i¤ there is a for-

mula  (x; y) and a compatible choice of domains D such that M
�
D
�
contains

arbitrarily long �nite �D -chains.
Observe that, for every n 2 N, "M

�
D
�
contains a �D -chain of length n"

can be expressed by an L-formula, and hence it is satis�ed in every L-structure
N elementarily equivalent to M .
Finally, we say that a D-type p over M is �nitely determined if for every

formula ' (x; y), where the sort of x is consistent with D, " > 0 and choice of
domains D

0
consistent with y, there is � > 0 and a �nite subset B of M

�
D
�

such that, for every c1; c2 2M
�
D
0�
,

sup
b2B

��' �b; c1�� ' �b; c2��� � �
implies

j'p (x; c1)� 'p (x; c2)j < "

or, equivalently, that the condition

j' (x; c1)� ' (x; c2)j < "

belongs to p.

Lemma 7.3.1 If M is a model of T which has a non-�nitely determined type
over it, then M has the order property

Proof. By hypothesis, there is p 2 SL
�
D;M

�
and a formula  (x; y), where

the sort of x is compatible with D, a choice of domains D
0
compatible with the

sort of y and " 2
�
0; 12
�
such that, for every � > 0 and every �nite subset B of

M
�
D
�
, there are b (�;B) ; c

�
�;B

�
2M

�
D
0�
such that

sup
a2B

��' �a; b (�;B)�� ' (a; c (�;B))�� � �
and ��'p �x; b (�;B)�� 'p (x; c (�;B))�� � "
De�ne now recursively sequences (�n)n2! inM

�
D
�
,(�n)n2! ; (
n)n2! inM

�
D
0�

and (Bn)n2! in
�
M
�
D
��<@0 in this way: B0 = ?, �j = b

�
"
2 ; Bj

�
, 
j =

c
�
"
2 ; Bj

�
, �j realizing the �nite subset

f" j' (x; �i)� ' (x; 
i)j � "" j i 2 f0; 1; :::; jgg
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of p and Bj+1 = Bj[
�
�j ; �j ; 
j

	
. If f is a continuous function that is constantly

equal to 0 on (�1; "2 ] and constantly equal to 1 on [";+1), then the formula

� (x1; y1; z1; x2; y2; z2) = f (j' (x1; y2)� ' (x1; z2)j)

orders the sequence
((�n; �n; 
n))n2N

in M
��
D;D

0
; D

0��
.

Proposizione 7.3.2 If L is a separable language and T is an L-theory, the
following statements are equivalent

1. T is unstable

2. T is not c-stable

3. there is a model of T with the order property

4. there is a separable model of T with the order property

5. for every linear order I there is a formula  (x; y), a choice of domains D
and a model M of T such that M

�
D
�
contains a �D -chain of order type

I

6. there is a model of T with the approximate order property

7. every model of T of density character c has the order property

8. some model of T has non-�nitely de�ned types over it

9. every model of T of density character c has not �nitely de�ned types over
it

Proof.

1) 2 Obvious

3, 4, 5, 6 By compactness, Lowenheim-Skolem and the Fundamental The-
orem on Ultra�lters.

5) 1 Fix a cardinal � and suppose � is the least ordinal (or cardinal) such that
2� > �. Suppose  (x; y) is a formula, D is a choice of domains witnessing
the order property, and M is a model of T with �D -chain (ai)i22<� of
order type 2<�, where 2<� has the lexicographic order. If

A = faigi22<� �M
�
D
�

then A is closed and discrete of cardinality � �. By Lowenheim-Skolem,
one can assume M has character density � �. I now claim that the space
SL
�
D;M

�
has metric character density 2� > �. In fact, identify 2<� with
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the subset of eventually zero sequences in 2�. For every � 2 2� consider a
p� 2 SL

�
D;M

�
containing the consistent type�

' (x; a� ) = 0
�� � > �, � 2 2<�

	
[
�
' (x; a� ) = 1

�� � < �; � 2 2<�
	

I claim that E = fp� : � 2 2�g is a closed and discrete subset of SL
�
D;M

�
in the metric d of cardinality 2� > �. Suppose " > 0 is such that, for every

N � M and b; d; b
0
; d
0 2 N

�
D
�
, max

n
d
�
b; b

0�
; d
�
d; d

0�o
< " implies��� �b; d��  �b0; d0���� < 1. Consider � 6= �0 2 2� and � 2 � such that

�j� = �0j�, � (�) = 0 and �0 (�) = 1. Suppose N � M and c; c0 realize

�; �0. Thus,  
�
c; a�j�+1

�
= 1 and  

�
c0; a�j�+1

�
= 0. As a consequence,�� �c0; a�j�+1��  �c; a�j�+1��� � 1 and d (c; c0) � ". This implies that

d (p�; p�0) � ". This shows that the metric character density of SL
�
D;M

�
is at least jEj = 2� > �. This shows that T is �-unstable.

2) 9 Suppose M is a model of T of character density c. If, by contradiction,
every type over M is �nitely determined, then the character density of
SL
�
D;M

�
is at most c@0 = c

9) 8 ^ 7) 3 Obvious

9) 7 ^ 8) 3 It follows from the previous lemma

Corollario 7.3.3 If L is a separable language and A is an L-structure, then
the complete theory Th (A) of A is unstable i¤ A has the approximate order
property

Proof. Su¢ ciency is obvious. About necessity, assuming Th (A) unstable,
by 1 ) 6 of the previous proposition there is a model M of Th (A) that has
the approximate order property. Thus, M is elementarily equivalent to A and,
since the approximate order property can be expressed by L-formulae, A has
the approximate order property as well.

7.4 Gaps and the order property

If (P;�) is a poset and �; � two ordinals, a (�; �)-pregap in P is an increasing
sequence (ai)i2� indexed by � of elements of P and a decreasing sequence (bj)j2�
in P such that ai � bj for every i 2 � and j 2 �. An element x of P such that
ai � x � bj �lls or separates the pregap. A (�; �)-gap is a (�; �)-pregap which
is not �lled.
If L is a linear order, the coinitiality of L is the minimal cardinality of a

subset X of L such that, for every x 2 L there is y 2 X such that y � x.
Denote by N%N the set of nondecreasing functions f from N to N such that
limn!+1 f (n) = +1. If U is a ultra�lter over N, the set N%N /U of equivalence
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classes of elements of N%N modulo U is linearly ordered by the relation [f ]U �
[g]U i¤ fn 2 N j f (n) � g (n)g 2 U . The coinitiality of N%N /U is denoted by
� (U).

Lemma 7.4.1 If (Mn)n2N is a sequence of L-structures with the order property,
 (x; y) is a formula witnessing the order property of such sequence, where x and
y are of sort S, D is a compatible choice of domains, and U is a ultra�lter on
N, then the least ordinal � such that

QU
n Mn

�
D
�
contains an (!; �)-gap with

respect to �D is � (U).

Proof. Suppose f[fi]U : i 2 � (U)g is a decreasing sequence in N%N /U such
that, for every [g] 2 N%N /U , there is i 2 � (U) such that [fi] � [g]. De�ne
recursively N0 = 1 and, for every m 2 N, N (m) � max fm;Nm�1g such that,
for every i � N (m) there is a �D

 ; 1m
chain

�
ai;m1 ; :::; ai;mm

�
of lengthm inMi

�
D
�
.

For every i 2 I, de�ne m (i) 2 N such that i 2 [N (m (i)) ; N (m (i+ 1))] and
a
i;m(i)
j = aij for every j 2 f1; 2; ::::;m (i)g. If h 2 NN, de�ne ah 2

QU
n Mn by

ah (i) = aih(i) if h (i) � m (i) and ah (i) = aim(i) otherwise. For every m 2 N,
denote by hm the function from N to N constantly equal to m. I claim that
(ahn)n2N and (afi)i2�(U) form an (!; �)-gap in M

�
D
�
with respect to �D . In

fact, suppose b 2
QU
n Mn is such that ahn � b for every n 2 N. De�ne, for

every m 2 N,

Xm =
n
i � N (m)

��� 8k 2 f1; 2; :::;mg , ahk (i) �D ; 1m b (i)
o

Thus, (Xm)m2N is a decreasing sequence of elements of U such that
T
mXm = ?.

For i 2 X1, de�ne h (i) = m if i 2 XmnXm+1. Consider an element X of U
such that, for every m 2 N, XnXm is �nite. De�ne, recursively, K0 = 1 and,
8n 2 N, Kn � Kn�1 such that X \ [Kn;+1) � Xn. De�ne, for every n 2 N
and x 2 [Kn;Kn+1), h (x) = n. This de�nes U-almost everywhere an element
h of N%N such that ah �D b. If i 2 � (U) is such that [fi]U � [h]U , then

afi �D ah �D b. This shows that
QU
n Mn

�
D
�
contain an (!; � (U))-pregap.

Suppose now that � is an ordinal such that
QU
n Mn contains an (!; �)-gap and

suppose (an)n2N and
�
bi
�
i<�

give an (!; �)-gap on
QU
n Mn. De�ne, for every

n 2 N,
Yn =

n
i � n

���a1 (i) ; :::;an (i) form a �D ; 1n -chain
o
2 U

De�ne, for every m 2 N and i 2 YmnYm+1, m (i) = m. If h 2 NN, de�ne, as
above, ah 2

QU
n Mn by, for i 2 Y1,

ah (i) = aminfh(i);m(i)g (i)

and observe that an �D ah for every n 2 N i¤ U � limn2N h (n) = +1. Rea-
soning as above, for every i < �, it is possible to �nd fi 2 N%N such that, for
every n 2 N, an �D afi � bi. Now, I claim that the family f[fi]Ugi2� is such
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that, for every g 2 N%N, there is i 2 � such that [fi]U � [g]U . In fact, suppose
g 2 N%N. Thus, an � ag for every n 2 N and, since ag does not separate the
gap, there is i 2 � such that ag �D bi. It follows that ag �D afi and, hence,
[g]U � [fi]U and [f ]U � [gi]U .
In [D] it is proved that, for every regular cardinal � such that @0 � � � 2@0 ,

there is a ultra�lter U over N such that � (U) = �. From this and the previous
lemma follows directly the following theorems.

Teorema 7.4.2 If L is a separable language, (Mn)n2N is a sequence of L-
structures with the order property and :CH holds, then there are nonprincipal
ultra�lters U ,V over N such thatY

n

UMn �
Y
n

VMn

Proof. Pick ultra�lters U ;V over N such that � (U) = @1 and � (V) = @2.
By the previous lemma, if  and D are a formula and a choice of domains
witnessing the order property of the sequence (Mn)n2N, then

Q
n
VMn contains

a (!; !2)-gap with respect to �D , while
Q
n
UMn does not. This implies thatQ

n
UMn and

Q
n
VMn are not isomorphic.

In [FS] this theorem is re�ned, getting the following

Teorema 7.4.3 If L is a separable language, (Mn)n2N is a sequence of L-
structures with the order property and :CH holds, then there are 22

@0 many
nonisomorphic ultraproduct of this sequence

Teorema 7.4.4 If L is a separable language and A is an L-structure of charac-
ter density � c whose complete theory is unstable, then the following statements
are equivalent

1. for every nonprincipal ultra�lters U ;V over N, AU ' AV

2. the Continuum Hypothesis holds

Moreover, if :CH holds, then there are 2c-many nonisomorphic ultrapowers
of A
Proof.

2) 1 If CH holds, then AU is saturated for every nonprincipal ultra�lter U
over N and the result follows from the fact that any two saturated

1) 2 Since Th (A) is unstable, A has the approximate order property and
the sequence constantly equal to A has the order property. The previous
theorem can be applied.
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7.5 Order property for C*-algebras

Lemma 7.5.1 If M is an in�nite-dimensional C*-algebra, then M has the or-
der property

Proof. Since any in�nite-dimensional C*-algebra M has in�nite-dimensional
abelian *-subalgebras, we can assume M abelian. By the characterization the-
orem of abelian C*-algebras, there is a locally compact Hausdor¤ space X such
that M = C0 (X), If bX = X [f1g is the one point compacti�cation of X, then

C0 (X)

=
n
f : X ! C

��� f is continuous and, 8" > 0, (jf j � ")+ is compactly supported
o

=
n
gjX

��� g 2 C � bX� , g (1) = 0o .
Since M is in�nite-dimensional, X is in�nite. Consider an injective sequence
(an)n2N of elements of X converging to 1. De�ne recursively compact neigh-
borhoods Kn of fa1; :::; ang and functions fn 2 C0 (X) such that f (X) � [0; 1],
Kn � Kn+1 and fn (Kn) = 1 and fn (am) = 0 for m > n. Suppose n � 0
and f1; ::::; fn and K1; :::;Kn have been de�ned. De�ne now Kn+1 a compact
neighborhood of Kn[fan+1g missing faigi>n+1 and fn+1 a continuous function
from X to [0; 1] such that fn+1 (Kn+1) = 1 and fn+1 (am) = 0 for m > n + 1.
De�ne now

gn = sup
1�k�n

fk

and observe that fgngn2N is a sequence of distincts elements of M such that
gngm = gm if m � n and kgn � gmk = 1 if n 6= m. Thus, if  (x; y) = kxy � yk
then (gn)n2N is a �

D1

 -chain and M has the order property.

Teorema 7.5.2 If :CH holds and M is an in�nite-dimensional C*-algebra,
then there are 2c-many nonisomorphic ultrapowers of M

Teorema 7.5.3 If M is a C*-algebra of character density � c and CH holds,
the for any two nonprincipal ultra�lters U ,V on N, MU 'MV

7.6 Order property for II1 factors

Lemma 7.6.1 There is a formula  in the language of von Neumann algebras
such that, for every n 2 N, M2n contains a �D -chain of length n � 1, where
D = (D1; D1) and D1 is the unit ball

Proof. Identify M2n with M
n
2 . Consider

x =

�
0
p
2

0 0

�

67



and observe that

[x; x�] =

�
2 0
0 �2

�
and kxk2 = 1, k[x; x�]k2 = 2. De�ne now, for 1 � i � n� 1,

ani =
1

2

iO
j=1

x

nO

j=i+1

1

and

bni =
1

2

iO
j=1

1
 x� 

jO

j=i+2

1:

Thus, kani k2 = kbni k2 = 1
2 and if i � j then k[ai; bj ]k2 = 0, while k[ai; bj ]k2 = 1 if

j < i. Thus, if  (x1; y1; x2; y2) = k[x1; y2]k2, then ((ani ; bni ))
n�1
i=1 is a �D -chain.

Corollario 7.6.2 IfM is a II1 factor, thenM has the approximate order prop-
erty

Proof. It follows from the fact that, for every n 2 N there is an injective
*-homomorphism �n :Mn !M commuting with the trace.

Lemma 7.6.3 The sequence (Mn)n2N has the order property

Proof. Suppose " > 0 and n 2 N. If m > 2n�1
" , then m = k � 2n + r

for some r 2
�
0; 1; :::; 2n�1

	
. Thus, if p 2 Mm is such that � (p) = k�2n

m ,
then pMmp ' Mk�2n ' Mk 
M2n . Identify pMmp with Mk 
M2n . Suppose
((ani ; b

n
i ))

n
i=1 is as in the previous lemma. De�ne now �ni = 1
 ani 2Mk 
M2n

and �ni = 1
 bni 2Mk 
M2n and observe that, if  (x1; y1; x2; y2) = k[x1; y2]k2
as before, then ((�ni ; �

n
i ))

n
i=1 is a �

(D1;D1)
 -chain in Mk 
M2n . Regard now �ni

and �ni as elements of Mm and observe that, for every x 2 pMmp,

�Mm (x) =
k2n

m
�pMmp (x)

and hence
kxkpMmp

2 � kxkMm

2 =
r

m
kxkpMmp

2 < " kxkpMmp
2

for every x 2Mk 
M2n . Thus, ((�ni ; �
n
i )) is a �

(D1;D1)
 ;" -chain in Mm.

Teorema 7.6.4 If :CH holds, then there are 2c-many nonisomorphic ultra-
products of the sequence (Mn)n2N

Teorema 7.6.5 If :CH holds and M is a II1 factor, then there are 2c-many
nonisomorphic ultrapowers of M

Teorema 7.6.6 If M is a von Neumann algebra of character density � c and
CH holds, then for any two nonprincipal ultra�lters U ,V on N, MU 'MV
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7.7 Order property for symmetric and unitary
groups

Lemma 7.7.1 There is a formula  (x1; x2; y1; y2) in the language of bounded
bi-invariant metric groups such that, for every n 2 N, S3n has a � -chain of
length n.

Proof. Identify S3n with the set of permutations of f0; 1; 2gn. Consider the
inclusion

n timesz }| {
S3 � :::� S3 ,! Sf0;1;2gn

de�ned by
(�0; :::; �n�1)! �0 � :::� �n�1

and
(�0 � :::� �n�1) (i0; :::; in�1) = (�1 (i1) ; :::; �n (in))

De�ne also, for i = 1; :::; n,

�ni =

i timesz }| {
(12)� :::� (12)�

n�i timesz }| {
e� :::� e

and

�nj =

j�1 timesz }| {
e� :::� e� (23)�

n�j timesz }| {
e� :::� e

Observe that, for i < j, [�i; � j ] = 1, and for i � j,

�
�ni ; �

n
j

�
=

j�1 timesz }| {
e� :::� e� (123)�

i�j timesz }| {
e� :::� e�

n�j timesz }| {
e� :::� e

Thus, if i < j, then
d
��
�ni ; �

n
j

�
; e
�
= 0

while, if i � j, then
d
��
�ni ; �

n
j

�
; e
�
= 1

Thus, if  (x1; x2; y1; y2) = d ([x1; y2] ; e), then the sequence ((�i; � i))
n
i=1 is a

� -chain in S3n .

Lemma 7.7.2 The sequence (Sn)n2N has the order property

Proof. Suppose " > 0 and n 2 N. Consider m 2 N is such that m > 3n

" then
m = k3n+r for some k; r 2 N and 0 � r < 3n. Suppose that  and ((�i; � i))ni=1

are as in the previous lemma. As before, embed

k timesz }| {
S3n � :::� S3n in Sk3n and

consider the elements

�ni =

k timesz }| {
�ni � :::� �ni 2 Sk3n
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and

Tnj =

k timesz }| {
�nj � :::� �nj 2 Sk3n :

Observe that
�
�ni ; T

n
j

�
= e if i < j and d

��
�ni ; T

n
j

�
; e
�
= 1 if i � j. Let Sk3n

act on the �rst k3n elements of m. This de�nes an inclusion of Sk3n of Sm that
sends �ni and T

n
j to elements e�n;mi and eTn;mj of Sm. These satisfy the following:he�n;mi ; eTn;mj

i
= e if i < j and

d
�he�ni ; eTnj i ; e� = 1� r

m
> 1� 3

m

m
> 1� "

if i � j. This shows that Since this true for every " > 0, n 2 N and m > 3n

" ,
(Sn)n2N has the order property.

Corollario 7.7.3 The sequence (Un)n2N has the order property

Proof. Fix " > 0 and n 2 N. Suppose � > 0 is such that
p
1� � > 1 � ". If

m > 3n

� , consider
��e�n;mi ; eTn;mi

��n
i=1

as in the proof of the previous lemma.

Remind that, if � 2 Sm and A� 2 Um is de�ned by

A� (ei) = e�(i)

then the function � ! A� is a homomorphism such that, for every �; � 2 Sm,

d (�; �) =
1

2
d (A�; A� )

2

Thus, if  is the formula as in the previous lemma, one has

1p
2
 
�
Ae�n;mi

; AeTn;mi
; Ae�n;mj

; AeTn;mj

�
=

1p
2
d
�h
Ae�n;mi

; AeTn;mj

i
; e
�

=
1p
2
d
�
A[e�n;mi ;eTn;mj ]; Ae

�
=

r
d
�he�n;mi ; eTn;mj

i�
.

Thus,  
�
Ae�n;mi

; AeTn;mj

�
= 0 if i < j and  

�
Ae�n;mi

; AeTn;mj

�
�
p
1� � > 1 � "

if i � j. This shows that the sequence
��
Ae�n;mi

; AeTn;mi

��n
i=1

is a � 1p
2
 -chain

in Um. Since this is true for every " > 0, n 2 N and m > 3n

" , (Un)n2N has the
order property.

Teorema 7.7.4 If :CH holds, then there are 2c-many nonisomorphic universal
so�c groups and universal hyperlinear groups.

70



Bibliography

[B] B. Blackadar, Operator algebras, Encyclopaedia of Mathematical Sci-
ences, vol. 122, Springer-Verlag, Berlin, 2006, Theory of C*-algebras
and von Neumann algebras, Operator Algebras and Noncommutative
Geometry, III.

[BYBHU] I. Ben Yaacov, A. Berenstein, C.W. Henson, and A. Usvyatsov,Model
theory for metric structures, Model Theory with Applications to Al-
gebra and Analysis, Vol. II (Z. Chatzidakis et al., eds.), Lecture Notes
series of the London Math. Society., no. 350, Cambridge University
Press, 2008, pp. 315-427

[D] A. Dow, On ultrapowers of boolean algebras, Topology Proc. 9 (1984),
no. 2, 269-291

[FHS1] I. Farah, B. Hart, and D. Sherman, Model theory of operator algebras
I: Stability, preprint, http://arxiv.org/abs/0908.2790, 2009.

[FHS2] I. Farah, B. Hart, and D. Sherman, Model theory of operator algebras
II: Model Theory, preprint, http://arxiv.org/abs/0908.2790, 2009.

[FS] I. Farah and S. Shelah, A dichotomy for the number of ultrapowers,
preprint, arXiv:0912.0406v1, 2009

[KP] A. Kwiatkowska, V. Pestov, An introduction to hyperlinear and so�c
groups, arXiv:0911.4266v2 [math.GR], Lecture notes of the 7-th Ap-
palachian set theory workshop (Cornell University, Ithaca, NY, No-
vember 22, 2008), 30 pp., to appear in the volume "Appalachian
Set Theory 2006-2009" (James Cummings and Ernest Schimmerling,
eds.), the Ontos-Verlag Mathematical Logic Series.

[P] V. Pestov, Hyperlinear and so�c groups: a brief guide, Bull. Symbolic
Logic 14 (2008), 449-480.

[T] S. Thomas, On the number of universal so�c groups, Proceedings of
the American Mathematical Society, Volume 138, Number 7, July
2010, Pages 2585�2590

71


