Relativistic density functional theory of strongly correlated system by Wannier Function in FPLO
1 Introduction
Linear combination of atomic orbital (LCAO) combined with tight binding approximation is used by Slater [1] to solve band structure. Later, Escjrig further developed this method and contrived an LCAO [2] which is very accurate and more appropriate to solve KS function (in FPLO). 
In this method, the ansatz fulfilling the Bloch theorem is expanded by linear combinations of localized Slater-type orbitals depending on the optimization parameters:
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Where |RsL >   refers to solutions of spherical averaged atomic potentials around atomic position R+s, R is the Bravis lattice vector, s is the site vector with respect to the origin of the unit cell, k is the quasi-momentum and n is the band index.
2 the Effect of Relativistic

Spin is one important property affected by relativistic effects, though the whole theory developed in the last section can be generalized to spin-dependent case by substituting 
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 and consider the external potential together with vXC to be spin-dependent corresponding to the usual Pauli formalism. Rajagopal and Callaway [3] first shoed that it is a natural result to have spin-dependent DFT if the relativistic scheme is used at the beginning. 

Another important effect due to full relativistic expansion is SOC [4]. In the KS-Dirac equation, SOC is including in the kinetic energy implicitly. To show it, we consider a general case with KSD Hamiltonian HKSD. The general solution for this time-independent Hamiltonian is a four component spinor where are spherical spinors as Eigen functions of the Dirac spherical operators. Apply HKSD upon this ansatz, two coupled equations for large g(r) and small f(r) components can be derived:
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 with a spherical potential V = V(r). The general solution for this time-dependent Hamiltonian is a four component spinor 
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where Yku are spherical spinors as eigen functions of the Dirac spherical operators. 
Ongoing project and Application with IFW
Topological insulator attract increasing attention due to the novel quantum state based on quantum spin Hall (QSH) and hence the potential applications in quantum computation. A band gap exists which is caused by spin-orbital coupling. We investigate the effect of SOC in the system of Ge2Sb2Te5.
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From the above figure, the effect of SOC is obvious.  The right one is the band structure without SOC while the left one with SOC.  The Dirac-Point appears at the Fermi level in the right one. But the SOC split it into two isolated bands. For the band structure without SOC, Ge4p-1 and 4p+1 degenerate at gamma point. Interestingly, the degenerate band is splited by SOC into 4p3/2+3/2 and 4p3/2-3/2. Therefore, the twofold degenerate states split into one upper and one lower level.
3, LDA+U approach in Wannier function 

Wannier functions can be defined in many ways there is a gauge freedom of choosing a phase transformation. The ideal way of fixing the gauge is the requirement of maximum localization. This is a tedious algorithm and we do not do this in FPLO. However, it turns not to be localized; it in most cases means the WFs is badly chosen. The main drawback of this approach is we have to choose where the WFs sit and which symmetry they shall have.  The WF sitting in cell R and being of type μ is defined as 
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Where ψ denotes the KS function and U is unitary matrix. If we  defines lee WFs thank KS function U is a column unitary projector. It maps all the KS bands on some few WFs. The choice of U is the choice of the gauge. In FPLO, we use chemically motivated local orbital basis φ to construct
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(s is the atom positions and v some quantum numbers specifying the orbital). These 
orbitals although non-orthogonal are in a way optimally localized. Therefore, it is clear that a WF centered at an atom and having a certain orbital symmetry has the corresponding orbital as its main contribution. This allows the choice of U.

We projected the KS equation on a test function X, which is an FPLO orbital in the simplest case. The resulting number is the square root of the orbital character in the above equation. If we want to project a sub band, we have to set a particular window.
The first Brillouin zone (BZ) of the lattice. Different choices for the unitary matrix U(k) lead to different Wannier functions, which are thus not uniquely denoted by Eq. (3). A unique set of maximally localized Wannier functions (MLWFs) can be generated by minimizing the total quadratic spread of the Wannier orbitals.

Incorporation of Wannier functions into the LDA+U method will be pursued. Some development of formalism, including obtaining a preferred (aiming toward optimal) specication of the Wannier functions, will however have to proceed implementation of any algorithm. Local orbital basis sets will be given attention.
Ongoing project with IFW
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T and U are empirical parameters.

We determine t and U from first principles and then solve LDA+U or DMFT with the U value from Wannier function.
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