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Purpose of the visit 

 
The main objective of this project was to explore the properties of electromagnetic waves in 

nonlinear multilayered quasi-periodic structures comprised of dielectric layers. The self-

consistent theoretical models, taking into account nonlinear properties of dielectric layers have 

been developed for characterization of electromagnetic wave propagation in these structures. 

The harmonic and combinatorial frequency generation by the quasi-periodic structure 

composed of alternating layers of two nonlinear dielectrics has been examined. The three-wave 

interaction technique has been used to study the nonlinear processes in the finite structure 

illuminated by the plane waves of two tones. The properties of the combinatorial frequency 

waves emitted from the stacked nonlinear layers in millimeter and THz frequency ranges has 

been discussed.  

 
Description of the work carried out during the visit 
 

Within the framework of the project we consider a finite periodic structure formed by two 

alternating dielectric layers of thicknesses d1 (layer A) and d2 (layer B). The layers A and B 

alternate in the quasi-periodic Fibonacci sequence. A Fibonacci system is based on the 

recursive relation S1 = {A}, S2 = {AB} and Sq = {Sq-1 Sq-2} for 2q   (here q is the Fibonacci number). 

We assume that L is the total thickness of the multilayered structure. For the Fibonacci structure 

1 1 2 1 2 1 2, , q q qL d L d d L L L      . The geometry of the problem is shown in Fig.1. The stack 

of nonlinear layers is surrounded by the linear homogeneous medium with dielectric permittivity 

a  at 0z   and z L . Assuming that two waves of frequencies 1 and 2 are incident at angles 



i1 and i2 on the surface of the nonlinear dielectric structure, we analyze the generation of a 

wave at the combinatorial frequency 3=1+2.  

 
Fig.1 Geometry of the problem. 

The nonlinear dielectric layers have class 6mm anisotropy, which is typical for the uniaxial 

crystals of CdS, CdSe, ZnO, α-ZnS, and AgI. The optical axes of all layers are oriented along 

the z-direction as shown in Fig. 1, and each layer is described by tensors of linear dielectric 

permittivity  , ,xx xx zz     and nonlinear susceptibility    
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Since the structure is spatially homogeneous in the x- and y- directions, the problem can be 

reduced to the independent analyses of the TE and TM waves without field variations along the 

y-axis, i.e. 0y   . In this work, we will consider only the TM waves with the field components 

, ,x z yE E H , while treatment of the TE waves is similar and somewhat simpler being unaffected by 

anisotropy of  .  

To calculate the coefficients of reflection and transmission the transmission matrix method is 

used. It connects the field at the beginning and at the end of the layer in a general case, the 

transmission matrix of the whole system is obtained by multiplying the individual layer matrices 

im   
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according to a chosen sequence. For the case of Fibonacci quasiperiodic structure  

1 1 2 1 2 1 2, , ( 2)q q qM m M m m M M M q    
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Here 1,2m  are the matrixes of the layers A and B. 



Assume that sin ,x a ik
c
    the transversal wave numbers for the homogeneous media are 

cosza a ik
c
   , where i  is the angle of electromagnetic wave incidence. Using the boundary 

conditions for tangential components of the electromagnetic field at 0z  and z L , we arrive 

the expressions for reflection and transmission coefficients for electromagnetic wave 
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The wave equation for the fields of the combinatorial frequency 3 in the nonlinear dielectric 

slabs d1 takes the form 
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where 3 3k c  and 3 3 3sinx ak k    is determined by the requirement of the phase 

synchronism in the three-wave mixing process 

3 1 2x x xk k k  ,  

where  1, 2 1,2 1, 2sinx x a i ik k    . The solutions of wave equation include partial solution of the 

inhomogeneous equation and general solution of the homogeneous one 
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Here 1A  are the amplitude coefficients in the solution of the homogeneous equation, and they 

are obtained from the continuity conditions for the tangential field components. The other four 

terms arise from the solution of the inhomogeneous equation, coefficients 1,2N   are expressed in 

terms of the field magnitudes in the layer at frequencies  1,2  
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The boundary conditions at the layer interfaces require that  
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The transfer matrix method can now be applied to interrelating the fields of combinatorial 

frequency 3 at the layer interfaces. Then the field continuity conditions require that 
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where  1 1d and  1 1d  are contain the terms proportional to the coefficients 1,2N  .  

The inhomogeneous wave equation for  3
B
yH   has the same form and the amplitudes of 

 3
B
yH   are similar to those in layer d1. Then  
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Using the transfer matrix method and the field continuity condition we can connect the fields of 

frequency 3 at the interfaces of the investigated structure. For example in the case of structure 

S4 we obtain  
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The amplitudes Fr,t of the waves scattered from the layer into the surrounding linear media (Fr 

at z<0 and Ft at z>L) at the combinatorial frequency 3 are determined by enforcing the 

boundary conditions of Hy(3) and Ex(3) continuity at the layer interfaces z = 0, L. 

Based on the solution of the outlined problem, the intensities of the waves of frequency 3 

outside the finite photonic crystal and the fields localized inside the structure are explored. The 

numerical simulation was done for the multilayered structure with the following parameters: 

xx1 = 5.382, zz1 = 5.457, xxz1 = 2.1107, zxx1 = 1.92107, zzz1 = 3.78107, xx2 = 1.4, 

zz2 = 2.6, xxz2 = 2.82108, zxx2 = 2.58108, zzz2 = 8.5810-8. The numerical simulation for 



plane-wave reflection from the quasiperiodic multilayered structures is presented in Fig.2. The 

results are presented for three different thicknesses of the stack (variable Fibonacci numbers). 

 

It can be seen, that for the investigated frequency range full reflectance increases with 

increasing of the structure thickness. 

The dependence of the intensity |Fr|2 of the field at the combinatorial frequency 3 = 1 + 2, 

emitted from the fine-layered periodic structure into surrounding media with equal permittivities 

a=b=1, is presented in Fig.3. It is shown that the intensity of the field emitted from the nonlinear 

photonic structure at combinatorial frequency 3 significantly varies with the number of layers or 

Fibonacci number too. Inspection of these plots shows that the maxima of |Fr,t|2 and minima of 

the pump wave reflectance are correlated. However, it was demonstrated that |Ft|2 is some times 

larger than |Fr|2 while average levels of both |Fr,t|2 grow with the structure thickness L. 

 

Fig. 3. Intensity of the wave at frequency 3 radiated from the periodic layered structure in the reverse direction 
of the z-axis at i1 = 30°, i2 = 45°; 2 = 0.8? 1012 s1 and d1=0.1 mm, d2=0.07 mm at q=4 (black dashed curve), 
q=5 (red solid curve) and q=5 (blue hatched curve) versus frequency of the first pump wave 
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Fig. 2. Reflectance of TM wave incident at i = 30° on the quasiperiodic stack of dielectric layers of thicknesses 
d1=0.1 mm, d2=0.07 mm at q=4 (black dashed curve), q=5 (red solid curve) and q=5 (blue hatched curve) versus 
frequency  
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Intensity of the field radiated from the stack at frequency 3 dramatically increases when the 

incidence angles of the pump waves differ, i1  i2. It was shown that the magnitude of the 

mixing products |Fr,t|2 scattered at the combinatorial frequency 3 is strongly correlated with the 

incidence angles of the pump waves. Moreover the field strength of the pump waves in the 

structure depends on their reflection R(1,2) and refraction T(1,2) coefficients which vary with 

frequency, angles of incidence i1,2, structure thicknesses and the anisotropy of the permittivity 

 . Anisotropy of the nonlinear susceptibility   also influences the phase synchronism which 

determines the efficiency of the mixing process. Finally, it is necessary to note that dissipation 

losses in the layers alter not only magnitude of the |Fr,t|2 peaks but also their frequencies. The 

dependences of the intensities of the waves at the combinatorial frequency on the dissipation 

processes have been analysed. The dependencies |Fr,t|2(1) for the tg xx,zz=0.01 are shown in 

Fig.4. It should be noted that with allowance of dissipation intensity of the reflected wave at 

combinatorial frequency is more dependent on the dissipation processes. When tg xx,zz≠0 the 

peaks of |Fr|2 and |Ft|2 are not reached simultaneously. 

 
Description of the main results obtained 
 
During this short visit, possible applications of proposed research and its extension towards  

Gaussian-beam scatteringwas discussed with experts of IRE NASU: Prof. A. A. Bulgakov (Dept. 

Solid State Radio-Physics) and IEEE Microwave Pioneer Award Winner Prof. Y. M. Kuleshov 

(Dept. Quasi-Optics). Possibilities of the experimental verifications of revealed effects at the 

millimeter and sub-millimeter waves have been also discussed.  

  

Fig. 4. Intensity of the wave at frequency 3 radiated from the periodic layered structure in the reverse direction 
of the z-axis at i1 = 30°, i2 = 45°; 2 = 0.8?1012 s1 and d1=0.1 mm, d2=0.07 mm at q=6  and tg xx,zz = 0.5
versus frequency of the first pump wave 

|F
r|2 , a

rb
. u

ni
ts 

1ˣ10-12, s1 


