
Scientific report
Micro-DICE – Short visit grant 6643

Host scientist: Dr. J.H.P. de Bresser, Associate Professor, University of Utrecht, The Netherlands
Grant recipient: Tobias Binder, University of Heidelberg

1) Purpose of the visit
Hans de Bresser implememented composite flow law calculations in an Excel spreadsheet necessitating several manual processing steps. The purpose of the visit was to gain detailed understanding of all processing steps, to start the implementation of an automatic approach, and to plan next steps to be carried out in close collaboration with Ernst-Jan Kuiper, a new PhD student at the University of Utrecht.

2) Description of the work carried out during the visit
Understanding the calculation of volume fractions with STRIPSTAR
The STRIPSTAR tool developed by Renée Heilbronner allows the calculation of volume fractions from two-dimemsional grain size distributions. The tool either reads the input data from text files or prompts the user to enter the frequencies per bin manually. Assuming spherical grains of a given radius leads to a probability distribution of the radius of two-dimensional cross-sections. Considering these distributions for all possible spherical radii, the two-dimensional grain size distribution is decomposed into a sum of probability distributions associated to different (three-dimensional) radii.
Implementating an efficient calculation of volume fractions - direct access to grain size files
The current state is that grain size distributions extracted from ice core sections have to be converted to the text file format required by the STRIPSTAR tool. Another limitation is that STRIPSTAR cannot handle more than 20 bins. A more efficient calculation without this limitation and with direct access to the grain size files (in HDF5 format) has been implemented in C++.

Understanding the composite flow law calculations
Hans de Bresser explained in detail how the composite flow law calculations are currently performed. The obtained volume fractions, model parameters of the Goldsby & Kohlstedt flow law and either stress or strain rate are required as input variables. As an analytical solution is generally not available, the fraction of grain-size sensitive creep and strain rate or stress, respectively, are calculated iteratively. These iterations are implemented in Excel macros which have been analyzed and discussed during the visit.

3) Description of the main results obtained
Establishing a software framework for further development (see Appendix)
As shown in the appendix, source code has been written to allow further development. The calculations currently performed by Excel macros will be added shortly in close collaboration with Ernst-Jan Kuiper. Initial problems with compiling the code has be solved.

Discussing possible extensions
Subsequent to the implementation of the functionality of the Excel macros in the C++ code, the influence of different subdivisions of the grain size distributions and of different grain size bins will be studied. Along the NEEM ice core, grain size is measured in sections covering each 55 cm in depth. This allows selecting different (arbitrarily inclined) layers and comparing their rheological properties. Since a coupling between fine- and coarse-grained is currently not included in composite flow law models, this subdivision serves as error estimation. The choice of grain size bins has been influence by limitiations of the STRIPSTAR tool which is no longer used.
4) Future collaboration with host institution
Joint code development and providing grain size files
I will provide Ernst-Jan Kuiper all the grain size files compiled for the NEEM and EDML ice core and support him in further development of the composite flow law calculations. The personal visit with him and Hans de Bresser was very important to exchange ideas and knowledge and to stimulate upcoming steps.
5) Appendix: Written code (C++)
#include <iostream>
#include <math.h>
#include <vector>
#include "hdf5.h"
int main(int argc, char *argv[])

{

 float length_scaling=193.5f;

 //open an existing file
 hid_t file_save = H5Fopen(argv[1], H5F_ACC_RDONLY, H5P_DEFAULT);

 //dataset for grain size
 hid_t dataset_id = H5Dopen(file_save, "grain_size", H5P_DEFAULT);

 //get filespace handle
 hid_t filespace = H5Dget_space(dataset_id);

 //get dimensions
 hsize_t dims[2];

 H5Sget_simple_extent_dims(filespace, dims, NULL);

 size_t nr_areas=dims[0];

 long * grain_area_size = new long[nr_areas];

 H5Dread(dataset_id, H5T_NATIVE_LONG, H5S_ALL, H5S_ALL, H5P_DEFAULT, grain_area_size);

 H5Dclose(dataset_id);

 //close the file
 H5Fclose(file_save);

 //initialize grain equiv radius histogram
 float radius_max=0.0f;

 float radius_bin_width=0.75f;

 std::vector<int> g;

 for (int area=0; area<nr_areas; area++)

 {

 float radius=2.0f*sqrt((float)grain_area_size[area]/3.1415927f)/length_scaling;

 if (radius>radius_max)

 {

 g.resize((int)(radius/radius_bin_width)+1);

 radius_max=radius;

 }

 if (radius>0.0f)

 {

 g[(int)(radius/radius_bin_width)]++;

 }

 }

 int n=g.size();//find last filled bin
 //Distribution of sections for uniform distribution of sphere radii
 std::vector<std::vector<float> > r(n);

 for (int i=0; i<n; i++) r[i].resize(n,0.0f);

 for (int j=0; j<n; j++)

 {

 for (int i=0; i<=j; i++)

 {

 float i1=i+1;

 float jj=(j+1)*(j+1);

 r[i][j]= (sqrt(jj-i*i)-sqrt(jj-i1*i1))/n;

 }

 }

 //Analysis of histogram of sections
 std::vector<float> gg(n);

 std::vector<float> f(n,0.0f);

for (int i=0; i<n; i++) gg[i]=g[i]*r[n-1][n-1]/g[n-1];

 for (int m=n-1; m>=0; m--)

 {

 float factor=gg[m]/r[m][m];

 if(factor>0.0f) f[m]=factor;

 for (int i=0; i<n; i++) gg[i]=gg[i]-factor*r[i][m];

 }

 //Weight percent
 std::vector<float> vsize(n);

 std::vector<float> fvol(n);

 float sumv=0.0f;

for (int i=0; i<n; i++)

 {

 vsize[i]=(i+1)*(i+1)*(i+1)*4.1887902f;//4*3.14159/3 * R*R*R
 fvol[i]=f[i]*vsize[i];

 sumv+=fvol[i];

 }

for (int i=0; i<n; i++)

 {

 std::cout<<i+1<<" "<<100.0f*fvol[i]/sumv<<std::endl;

 }

}

