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Purpose of the Visit

From 29th May to 4th June 2013 I visited the Free University of Berlin to
continue a collaboration begun with Yury Person when he visited TU Graz on a
previous ESF Short Visit Grant (5742) on the project described below.

Description of the work carried out during the visit and the main
results

The Erdős-Rényi model [5] G(n, p) is perhaps the most well-known and well-
studied random graph model, and many of its features and behaviours are by now
very well understood. For example, the existence of a so-called giant component
of order Θ(n) undergoes a phase transition at p = 1/n. More precisely, for any
ε > 0, G(n, 1−ε

n ) with high probability does not contain a giant component, while
G(n, 1+ε

n ) with high probability contains a unique giant component (see e.g. [1]).
Phase transition behaviour is also observed in other fields, such as percolation
theory and statistical physics.

While Yury Person was visiting Graz University of Technology during March
2013 on a previous ESF grant, together with Mihyun Kang we considered the
generalisation of this problem to 3-uniform hypergraphs, in which there are two
different possible generalisations of connectedness. Two pairs f1, f2 ∈

(
V
2

)
are

tightly connected if there is a sequence of edges e1, . . . , e` such that |ei ∩ ei+1| =
2 ∀1 ≤ i ≤ `− 1 and f1 = e1, f2 = e`. A giant component is a set of Θ(n2) tightly
connected pairs.

Inspired by the recent, elegant new proof of Krivelevich and Sudakov [6] of the
phase transition in the graph case, we were able to prove [4] that the random 3-
uniform hypergraph model H3(n, p) exhibits a phase transition for the emergence
of a giant tight component at p = 1/2n. Furthermore, we were able to use similar
methods to provide a new and simple proof of the analogous phase transition result
for vertex connectivity, which had already been well studied, e.g. [7, 3, 2].

While visiting Yury Person at the Free University of Berlin, we first re-visited
the proof of the phase transition for a giant tight component in the 3-uniform
case, filling in many previously missing details. As a result we have now largely
completed the writing up of the proof of the following result.

Theorem 1. Given ε > 0, the size of the largest tightly connected component in
the random 3-uniform hypergraph H3(n, p) is Θ(n2) if p = 1+ε

2n and O(log n) if
p = 1−ε

2n .

The main difficulty involved in generalising the techniques for graphs is that
at various stages in the argument we require that every vertex is in some sense
typical. More precisely we require that not too many pairs involving a vertex have
already been visited by the depth first search. This corresponds to bounding the
maximum degree of the graph of pairs visited.
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We then moved on to consider how to generalise our proof strategy to j-
connected components in k-uniform hypergraphs. For 1 ≤ j ≤ k − 1, two j-sets
f1, f2 ∈

(
V
j

)
are j-connected if there is a sequence of edges e1, . . . , e` such that

|ei ∩ ei+1| = j ∀1 ≤ i ≤ ` − 1 and f1 = e1, f2 = e`. A j-connected component
is a maximal set of j-connected j-sets. A giant component is component of size
Θ(nj). (Note that for k = 3, the case j = 2 corresponds to tight connectedness
in 3-uniform hypergraphs as described above, while for j = 1 this corresponds to
vertex-connectedness.) For this general case we now also have an outline of a proof
of the following theorem, which we are currently preparing for publication.

Theorem 2. Given integers j ≤ k, let p0 = p0(n) := (k−j)!

((k
j)−1)nk−j

. Given ε > 0,

the size of the largest j-connected component in the random k-uniform hypergraph
Hk(n, p) is Θ(nj) if p = (1 + ε)p0 and O(log n) if p = (1− ε)p0.

The main difficulty in moving from the 3-uniform case to the general k-uniform
case is that now rather than only needing to bound the degrees in a graph of visited
pairs, we in fact need to bound the i-degree in the j-uniform hypergraph of visited
j-sets for each 1 ≤ i < j. (In the case k = 3 we had j = 2, and therefore i = 1 was
the only case to consider.)

In both the 3-uniform and the general k-uniform case, the arguments involve a
number of different techniques involving probabilistic methods, including branch-
ing processes, coupling of random variables, martingales, dynamic processes
and depth first search trees. In both cases the giant component is unique by a
“sprinkling” argument.

Future collaboration and projected publications

The funding supplied by the ESF short visit grants 5742 and 5639 have allowed
us to develop a collaborative project between Yury Person at the Free University
of Berlin and Mihyun Kang and myself at Graz University of Technology. I have
greatly enjoyed this joint work and we intend to continue working together, on
this project and others, in the future. Several further questions on this project
immediately suggest themselves, including what happens in the critical window,
i.e. we consider the behaviour when ε is a o(1) function rather than a constant.

Our first aim is to finish writing up the results that we have already obtained,
outlined above. As previously mentioned, the proof of the 3-uniform case is at
an advanced stage. The general k-uniform, j-connected case is still in the early
stages. However, it is expected that this proof will ultimately supercede the 3-
uniform paper.

The generous support of the European Science Foundation will be acknowledged
in all publications resulting from this collaboration.
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