Proteomic approaches to study acclimation of *Synechocystis* cells to low CO₂ environment

Natalia Battchikova

Plant Physiology and Molecular Biology Department of Biology University of Turku, Finland natbat@utu.fi

I. Proteomics of membrane protein complexes using Blue-Native/SDS PAGE

Membrane proteome of *Synechocystis* Dynamically Responses to CO₂ Supply

Low CO₂

NDH-1 genes in *Synechocystis*

Synechocystis	MW	mem	E. coli	Predicted function	
-	-	-	NuoE	1×[2Fe-2S]	
-	-	-	NuoF	NADH-binding; FMN; 1×[4Fe-4S]	
-	-	-	NuoG	1×[4Fe-4S]; 1 (2*)×[2Fe-2S]	
NdhA	40.5	8	NuoH	Ubiquinone-binding	
NdhB	55.4	14	NuoN		
NdhC	13.7	3	NuoA		
NdhD1-D6	52.1-61.0	12	NuoM		
NdhE	11.2	3	NuoK		
NdhF1,F3,F4	66.6-74.4	14	NuoL	H,I,J,K,	
NdhG	20.6	5	NuoJ	(M,N,O	
NdhH	45.4	0	NuoD		
NdhI	22.2	0	NuoI	2×[4Fe-4S]	
NdhJ	18.6	0	NuoC	A,B,C,	F)
NdhK	27.3	0	NuoB	1×[4Fe-4S]	
NdhL	9.3	2	-		
NdhM	14.1	0	-		
NdhN	17.6	0	-		
NdhO	8.3	0	-		
CupA	50.0	0	-	Carbon uptake (inducible)	
CupS	14.1	0	-	Carbon uptake (inducible)	
CupB	51.2	0	-	Carbon uptake (constitutive)	

The NDH-1MS supercomplex in Thermosynechococcus elongatus

Ndh-1MS

Single particle analysis of NDH-1 from T. elongatus

Folea et al., FEBS Lett 2008

Multiple NDH-1 complexes in Synechocystis

Sodium-bicarbonate transporter (Slr1512, SbtA) is induced at low CO₂

High CO₂

Low CO₂

Ammonium/methylammonium permease (Sll0108, Amt1) is repressed at low CO₂

II. iTRAQ quantification

The ratio of one peak area to another represents the relative amount of a given peptide in each of the corresponding sample digests

Major challenges in iTRAQ quantification

- > Complexity (many peptides in various forms for a protein)
- > Diversity of properties (hydrophobicity, solubility in solvents, etc)
- > Broad range on protein abundancy
- Highly abundant peptides (from the pigment proteins belonging to the phycobilisome family, and Rubisco) reduce the chances to identify peptides belonging to low abundant proteins
- 2. Multiple injection replicates are necessary
 - → Due to autoselection in MS/MS analysis, this approach significantly improves the protein coverage and enhances the number of identified peptides
 - → Multiple MS/MS scans of the same peptide improve the consistency of quantification
- 3. The technique is biased towards hydrophilic proteins