A Limited Bioinformatics Analysis Results in an Improved Cyanobacterial Source for Structure-Function Studies of the Cytochrome *b*₆*f* Complex

D. Baniulis, E. Yamashita, J. Whitelegge, H. Zhang, and W.A. Cramer

Hetero-oligomeric Membrane Protein Structures in Oxygenic Photosynthesis

Crystal structures of the cytochrome *b*₆*f* complex

Kurisu, G. et al. (2003) Science, 302: 1009-1014

Stroebel, D. et al. (2003) Nature, 426: 413-418 from C. reinhardtii

Yan, J. et al. (2006) PNAS, 103: 69-74

Yamashita, E., et al. (2007) J. Mol. Biol, 370: 59-72.

Outline

- Crystallization of b6f complex
- <u>Problems</u> (proteolysis, delipidation); unique role of the cyanobacterium, *Mastiocladus laminosus;* but, no genetics

• <u>Results</u>:

3.0 Å structure of 220 kDa native complex; symmetric dimer built around Q/QH2 exchange cavity with 8 subunits, 13 TM helices, 7 prosthetic groups per monomer (4 hemes, 1 Fe₂S₂ cluster, 1 Chl *a*, 1 β -carotene).

Unique heme c_n , no aa side chains as axial ligands; unique g = 12 EPR spectral band.

3 stuctures obtained of $b_6 f$ co-complexed with quinone analogue inhibitors: DBMIB, NQNO, stigmatellin.

Stg is both n- and p-side inhibitor; Stg and NQNO are axial ligands of heme c_n , defining n-side PQ reduction site.

- Evolution of $b_6 f$ complex; non-photosynthetic firmicutes
- How to solve proteolysis problem, obtain a genetically tractable strain?

Masses (electrospray MS) of the 8 subunits of the *b*₆*f* complex from *M. laminosus*

<u>Subunit</u>	<u>Measured Mass (Da)</u>					
(I) "Large" Subunits						
Cyt f	32,270					
Cyt b ₆	24,710 (calc., 24,268)					
Rieske ISP	19,295					
Sub IV	17,529					
(FNR in spina	ch) 35,314 (weakly bound)					
(II) "Small" Subunits						
PetN	4057					
PetM	3841					
PetG	3530					
PetL	3304					

Whitelegge et al., Molec. Cell Proteomics (2002) 1: 816-826

Increased crystallization rate was achieved by lipid addition: approx. 10 lipids (DOPC or PG) per cytochrome *f.* Crystals such as those shown below grew overnight.

(a) Native [Cd ²⁺] (3.00 Å); R = 0.222; R_{free} = 0.268 (pdb: 2E74) (b) TDS (3.40 Å); R = 0.201; R_{free} = 0.258 (pdb: 2E75) (c) NQNO (3.55 Å); R = 0.224; R_{free} = 0.273 (pdb: 2E76) (d) DBMIB, 3.8 Å [pdb: 2D2C]

Dimeric b₆f complex: 26 TM helices; 8 subunits per monomer;
7 prosthetic groups (4 hemes, 1 [2Fe-2S] cluster, 1 Chl a, 1 β-carotene); central "quinone exchange cavity"; domain swapping of ISP; exposed ISP flexible loop - protease site

 3.0 Å native structure of dimeric b₆f complex from *M. laminosus*, obtained in the presence of Cd²⁺;
Minimal Function of the dimer: "Quinone exchange cavity" How does the quinone navigate across the cavity?

<u>e⁻-H⁺ Transfer Function</u>: PQH₂ oxidized on *p*-side; PQ reduced on *n*-side; according to conventional "Q cycle" (as in bc_1) <u>*p*-side quinol oxidation</u>: PQH₂ + FeS (ox) \rightarrow PQ•- + FeS (red) + 2H⁺ PQ•⁻ + b_p (ox) \rightarrow PQ + b_p (red)

<u>Trans-membrane electron transfer</u>: heme b_p (red) + heme b_n (ox) $\rightarrow b_p$ (ox) + b_n (red)

<u>*n*-side quinone reduction</u> (i) heme b_n (red) + PQ $\rightarrow b_n$ (ox) + PQ^{•-} (ii) heme b_n (red) + PQ^{•-} + 2 H⁺ \rightarrow 2 b_n (ox) + PQH₂

Thus, e⁻, H⁺, and PQ/PQH₂ must cross the complex

Novel redox prosthetic group: heme c_n (n-side) covalently bound to cyt b_6 Cys35, close (4 Å) to heme b_n ; no amino acid side chain as axial ligand; H₂O connects heme b_n propionate and heme c_n Fe.

Function of heme $c_{n:}$ quinone analogue inhibitor, NQNO, binds at free axial position of heme c_{n}

In fact, 2 quinone analogue inhibitors, NQNO and tridecyl-stigmatellin (TDS), are ligands of heme c_n . Implication: physiological ligand of heme c_n is bound plastoquinone

Quinone analogue inhibitor, TDS, binds near His-129 ligand of Rieske iron-sulfur protein; as in *bc*₁

Electron transfer pathway; PQ bound to heme c_n provides *n*side entry to PQ pool; NQNO inhibits by causing a -200 mV shift in Em of heme c_n (Alric *et al.*, 2005).

Heme c_n not in cyt bc₁; implies role in PSI cyclic pathway; however, *n. b.*, it is present in nonphotosynthetic firmicutes, e. g., *B. subtilis*

Spinach Chlamydomonas_reinhardtii Synechococcus_elongatus Synechocystis_spPCC_6803 Synechococcus_spPCC_7002 Nostoc_sp. Mlaminosus Heliobacterium_gestii Bacillus subtilis Bacillus cereus	MSKVED MSKVED (6)TESKVEQ (6)TDSKLEK (6)TDSKLEK MANVED MANVED MANVED MANVED MLNKIED MLNKIED	WFEERLE-IQ WFEERLE-IQ WFEERLE-IQ WFNERLE-IQ WFNERLE-IQ WFEERLE-IQ WFEERLE-IQ WLEERFPGIG WUERLD-IT WVDERLD-IT	AIADD ITSKY AIADD ITSKY AIADD ITSKY AISDD ISSKY AISDD ISSKY AIADD ISSKY AIADD VTSKY HVAKD VADHP PMWRD IADHE PIWRD IADHE	VPFEVN VPFEVN VPFEVN VPFEVN VPFEVN VPFEVN VPFEVN VPFEVN VPEEVNF(6)	IFYCLSSIT IFYCLSSIT IFYCLSSIT IFYCLSSIT IFYCLSSIT IFYCLSSIT IFYCLSSIT IFYCLSSIT IFFCLSSIT FVYCFSSLT FVYCFSSLT	TCPLVQVATO TCPLVQVATO TCPLIQFATO TCPLIQFATO TCPLIQFATO TCPLIQFATO TCPLIQFATO TCPLIQFATO FVTVIQCLTO FVTVIQILSO	FAMTFYIRDT FAMTFYIRDT FAMTFYIRDT FAMTFYIRDT FAMTFYIRDT FAMTFYIRDT FAMTFYIRDT IFLAFYIRDT MFLTMYYVD MFLTMYYVD MFLTMYYVD	VTDAFASVQY VAEAFASVQY VAEAFASVQY VAEAFASVQY VAEAFTSVQY VAEAFSSVEY VTEAYASVQY PEAAFTSVQM IKNAMESVYY IKNAMESVYY
Spinach Chlamydomonas_reinhardtii Synechococcus_elongatus Synechococcus_spPCC_6803 Synechococcus_spPCC_7002 Nostoc_sp. Mlaminosus Heliobacterium_gestii B.subtilis B.cereus	IMTEVNPOWL IMTEVNPOWL IMTEVNPOWL IMTEVNPOWL IMTEVNPOWL IMTEVNPOWL IMTEVNPOWL IMTEVNPOWL IMTEVNPOWL ITTEVRPOSV LOTEVAPOQI LOTEVAPOQI	IDSV RWSAS IDSI RWSAS IDSI RWSAS IDSI RWSAS IDSI RWSAS IDSI RWSAS IDSI RWSAS IDSI RWSAS IDSI RWSAS IDSM HWSAS VRGM HWGAS	Mevidenile V Mevidenile V Mevidenile V Mevidenile V Mevidenile V Mevidenile V Mevidenile V Mevidenile V Mevidenile V Inillovile Com LVIVenile T	FRVYLTOGFX FRVYLTOGFX FRVYLTOGFX FRVYLTOGFX FRVYLTOGFX FRVYLTOGFX FRVYLTOGFX LRVYYTOAFX LRVFFQGAYX LRVFFQGAYK	KDRELTWVTO RDRELTWVTO KDRELTWVTO RDRELTWVTO RDRELTWITO KDRELTWISO RDRELTWISO RDRELTWISO RDRELNWISO KDRELNWISO	VLGVLTASF VIMAVCTVSF VNLAVITVSF VMLAVTTVTF VIMATITVSF VILAVITVSF VILAVITVSF CFLLVLSLAL VLIFFVMLGL VLIFFVMLGL	OVTOYSLPHD OVTOYSLPHD OVTOYSLPHD OVTOYSLPHD OVTOYSLPHD OVTOYSLPHD OVTOYSLPHD OVTOYSLPHD AFTOYLLPHD OFTOYLLPHD	QIGTWAVELV QVGTWAVELV QVGTWAVELV QVGTWAVELV QVGTWAVELV QVGTWAVELV QVGTWAVELV QLSTWAVELV QLSTWASVLG MKALFATEVG MKALFATEVG
Spinach Chlamydomonas_reinhardtii Synechococcus_elongatus Synechocoystis_spPCC_6803 Synechococcus_spPCC_7002 Nostoc_sp. Mlaminosus Heliobacterium_gestii B.subtilis B.cereus	TGVPDAIDVI TGVPDAIDGV SGIPAAIDVV SGVPAAIDVV SGVPEAIDVV SGVPEAIDVV SGVPEAIDVV AETANTIDVV LQIAEATDLI IQIAEQTDLI	OSPLVELLRO OGFIVELLRO ODQLVELMRO ODQLVTIMRO ODQMVELLRO OVLISDLLRO OVLISDLLRO OFTLKIMMQO OTQVKTLLAO	S-ASVOQSTL G-VGVQQATL S-ESVOQATL G-ASVOQATL G-SSVOQATL G-SSVOQATL G-IKVTAEML HPDIVQAQTL HSEIVQAQTL	TRFYSL TFV TRFYSL TFV TRFYSL TFV TRFYSL TFV TRFYSL TFV TRYSN TFV TRYSN TFV SRFYVL WI TRFFAL VFF	LPLLTAVENL LPHSIAVENL LPHSIAVENL LPHLIAVENL LPHLIAVENL LPHLIAVENL LPHLIAVENL LPHLIAVENL LPALIAVENL LPAALISINA	METIMIREQO METIMIREQO INFIMIREQO ANFIMIREQO FETIMIREQO ANFIMIREQO ANFIMIREQO FETIMIREQO FETIMIREQO	ISOPL ISOPL ISOPL ISOPL ISOPL ISOPL ISOPL ISOPL ISOPL	

Advantage and deficiencies of *M. laminosus* for studies on *b*₆*f* complex and perhaps other photosynthetic membrane proteins

- Advantage: from this filamentous cyanobacterium, can isolate active complex that can be crystallized (with added lipid).
- Deficiencies:
 - (1) No genetics, His-tag
 - (2) Problem of proteolysis,

but much less of a problem than it is in the unicellular Synechocystis, Synechococcus, or Thermosynechococcus elongatus

Let's look for a cyanobacterium that is more closely related to *M. laminosus* and which has a sequenced genome.

16s RNA partial phylogenetic ladder for cyanobacteria

Fischerella SAG46.79

100

Bipyramidal crystals of Anabaena $b_6 f$ complex diffracted to < 3.0 Å in first diffraction trials

His-tagged *b*₆*f* complex cloned by R. Mella-Herrera/J. Golden (Texas A and M)

Summary

- Problems (not unique) in crystallization of $b_6 f$ complex.
- Using filamentous *M. laminosus*, 3.0 Å native structure in presence of Cd²⁺; complex is hetero-oligomeric 8 subunit, 220 kDa dimeric b₆f complex with 8 different prosthetic groups. Central core conserved in evolution.
- 3 novel prosthetic groups: Chl a, β-carotene; novel high spin heme on n-side proximal to heme b_n.
- PQ axial ligand displaced by quinone analogues, Stg, NQNO; implies b_n-c_n- PQ electron wire is n-side donor to PQ pool.
- $b_6 f$ complex not just another bc_1 complex; also illustrated by evolution of $b_6 f$ from firmicutes, e. g., *B. subtilis*.
- Movement of Q/QH₂ across complex is not simple "flip-flop," but a "labyrinthine" quided diffusion through caverns and portals.
- Used 16s RNS cyanobacterial "tree" to select *Anabaena* sp. PCC 7120 as a cyanobacterium with less proteolysis and a sequenced genome.
- Purified Anabaena b6f is dimeric, active, crystallizes readily, diffracts well, and is being His-tagged.
- All unicellular cyanobacteria from which active dimeric b6f complex cannot be isolated have proteases not in Anabaena, Thermosynechococcus elongatus having the fewest.