

Inorganic carbon acquisition and photorespiratory 2-phosphoglycolate metabolism in cyanobacteria

University Rostock Department Plant Physiology Germany

Sant Feliu de Guixols, Spain, 2008

Inorganic carbon evolved as limiting factor Rubisco: an enzyme with low affinity and specificity to CO₂

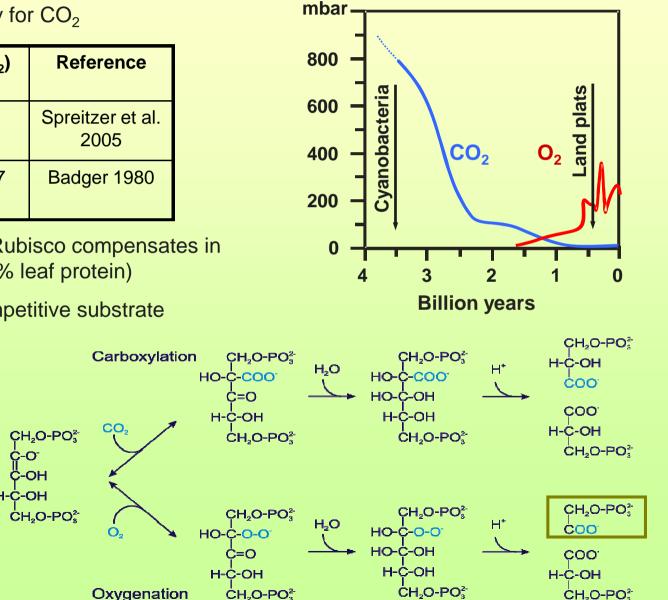
1. Problem: low affinity for CO₂

	Km (CO ₂) Reference [µM]	
Spinacea oleracea	21 <u>+</u> 1	Spreitzer et al. 2005
Anabaena variablis	293 <u>+</u> 27	Badger 1980

 \rightarrow high content of Rubisco compensates in higher plants (up to 30% leaf protein)

Ĉ-O

2. Problem: O₂ as competitive substrate

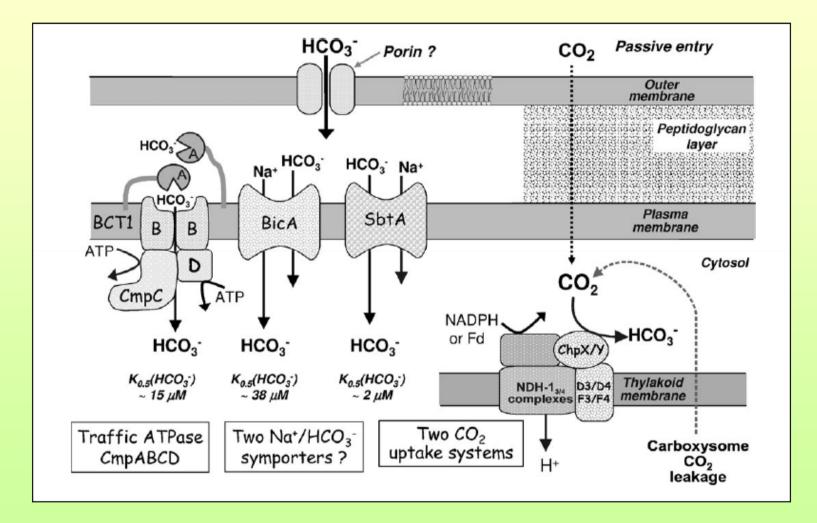

CH₂O-PO₃²

CH_O-PO

Ć=O

H-Ċ-OH

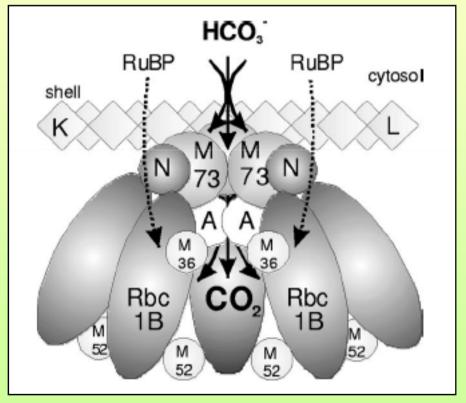
H-C-OH

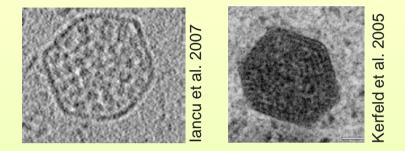


Phosphoglycolate (2-PG) or photorespiratory cycle in plants

Metabolic pathway transforming 2-phosphoglycolate produced by oxygenase reaction of RubisCO to 3-phosphoglycerate **Functions:** - Recycling of 75% of organic carbon from 2-PG - Avoidance of accumulation of toxic intermediates - Synthesis of intermediates - Protection against high light **Problems:** - Loss of organic carbon - Loss of energy

Photorespiratory plant mutants need high CO_2 – high CO_2 -requiring phenotype


Cyanobacteria evolved a carbon concentrating mechanism (CCM) employing C_i -uptake mechanisms and carboxysomes



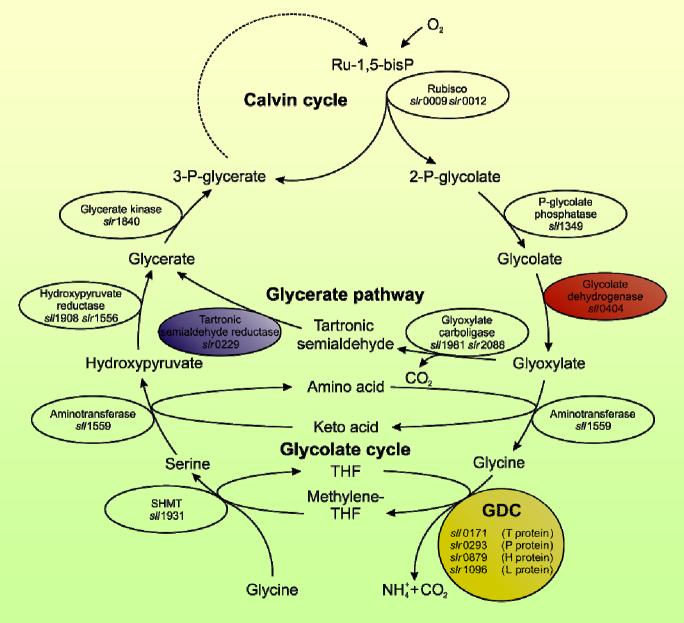
Bicarbonate is concentrated inside the cell

Cyanobacteria evolved a carbon concentrating mechanism (CCM) employing C_i-uptake mechanisms and <u>carboxysomes</u>

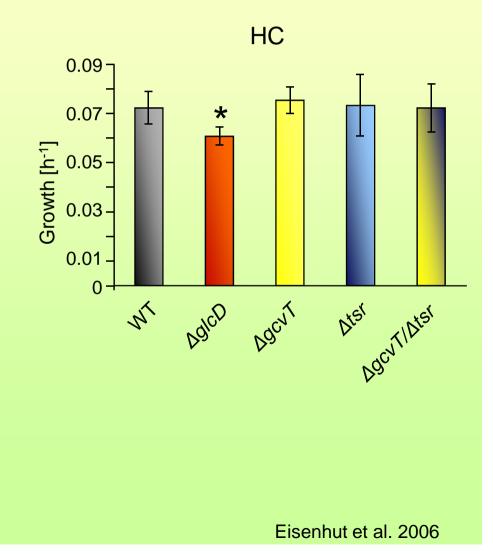
Model of the bicarbonate dehydrating complex inside the carboxysome (Cot, So & Espie, 2008)

Rubisco (Rbc) is concentrated in **carboxysomes**, where carbonic anhydrase (CcaA) releases high CO_2 amounts from HCO_3^-

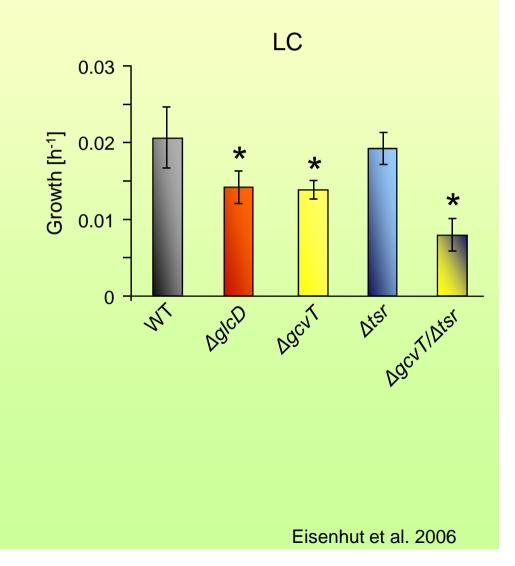
 \implies CO₂ is released near RubisCO allowing efficient carboxylation, CCM mutants need high CO₂ – high CO₂-requiring phenotype

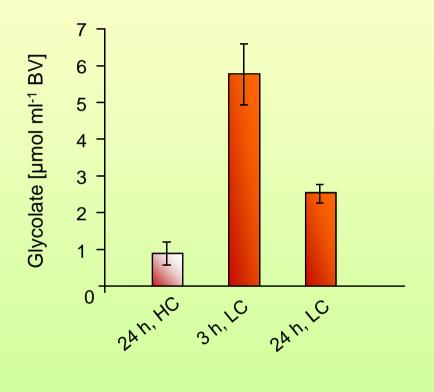

Search for 2-PG metabolizing proteins in *Synechocystis*: A mixture of plant and bacterial enzymes was found!

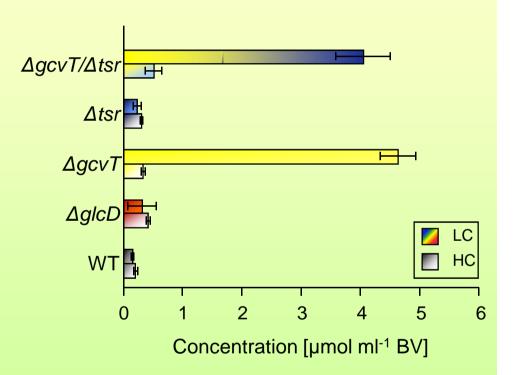
Sequence comparison of proteins participating in phosphoglycolate turnover with candidate proteins from *Synechocystis* sp. strain PCC 6803 using PSI- and PHI-BLAST (Altschul et al., 1997). The similar proteins from bacteria or *Arabidopsis thaliana* are in most cases biochemical characterized.


Protein (Abbreviation)	Organism	Acc. No.	Literature	Similarity e-value	ORF in Synechocystis
			9e ⁻⁰⁶	<i>sll</i> 1349	
Glycolate dehydrogenase subunit D (GlcD)	E. coli	AAC76015	Pellicer et al., 1996	3e ⁻¹²⁶	<i>sll</i> 0404
Serine:glyoxylate aminotransferase (AGT)	A. thaliana	At2g13360	Liepman and Olsen, 2001	3e ⁻⁵⁹	<i>sll</i> 1559
GDC, P protein (GcvP)	A. thaliana	At2g26080	Bauwe et al., unpubl.	0	slr0293
GDC, T protein (GcvT)	A. thaliana	At1g11860	Bauwe et al., unpubl.	7e ⁻⁵²	<i>sll</i> 0171
GDC, H protein (GcvH)	A. thaliana	At2g35120	Bauwe et al., unpubl.	2e ⁻²⁸	s/r0879
GDC, L protein (GcvL)	A. thaliana	At3g16950	Bauwe et al., unpubl.	1e ⁻¹⁶⁴	<i>slr</i> 1096
Serine hydroxymethyltransferase (SHMT)	A. thaliana	At4g37930	Voll et al., 2006	6e ⁻⁹⁴	<i>sll</i> 1931
Hydroxypyruvate reductase (HPR)	A. thaliana	At1g68010	Bauwe et al., unpubl.	2e ⁻²⁸	<i>sll</i> 1908
				2e ⁻²⁶	<i>slr</i> 1556
Glycerate kinase (GLYK)	E. coli	AAB93855	Cusa et al., 1999	3e ⁻⁶⁴	<i>slr</i> 1840
Glyoxylate carboligase (GCL)	E. coli	AAA23864	Chang et al., 1993	1e- ⁹⁴	slr2088
				3e- ⁵⁸	<i>sll</i> 1981
Tartronic semialdehyde reductase (TSR)	E. coli	P77161	Cusa et al., 1999	3e ⁻³⁵	slr0229

Hagemann et al. 2005


Cyanobacterial 2-PG metabolism: A combination of plant-like 2-PG cycle and bacterial-like glycerate pathway?


The glycolate dehydrogenase mutant showed diminished growth at HC, while other mutants grew like WT


Mutants defective in plant-like 2-PG cycle showed diminished growth at LC, while glycerate cycle mutant grew like WT

Glycolate accumulation was only observed in cells of the glycolate dehydrogenase mutant, even at HC!

Glycine accumulation in mutants of ORFs encoding plant-like 2-PG cycle or/and bacterial-like glycerate pathway proteins

Glycolate metabolism exists but employs at least two pathways in cyanobacteria

Eisenhut et al. 2006